ﻻ يوجد ملخص باللغة العربية
A family ${A_{0},ldots,A_{d}}$ of $k$-element subsets of $[n]={1,2,ldots,n}$ is called a simplex-cluster if $A_{0}capcdotscap A_{d}=varnothing$, $|A_{0}cupcdotscup A_{d}|le2k$, and the intersection of any $d$ of the sets in ${A_{0},ldots,A_{d}}$ is nonempty. In 2006, Keevash and Mubayi conjectured that for any $d+1le klefrac{d}{d+1}n$, the largest family of $k$-element subsets of $[n]$ that does not contain a simplex-cluster is the family of all $k$-subsets that contain a given element. We prove the conjecture for all $kgezeta n$ for an arbitrarily small $zeta>0$, provided that $nge n_{0}(zeta,d)$. We call a family ${A_{0},ldots,A_{d}}$ of $k$-element subsets of $[n]$ a $(d,k,s)$-cluster if $A_{0}capcdotscap A_{d}=varnothing$ and $|A_{0}cupcdotscup A_{d}|le s$. We also show that for any $zeta nle klefrac{d}{d+1}n$ the largest family of $k$-element subsets of $[n]$ that does not contain a $(d,k,(frac{d+1}{d}+zeta)k)$-cluster is again the family of all $k$-subsets that contain a given element, provided that $nge n_{0}(zeta,d)$. Our proof is based on the junta method for extremal combinatorics initiated by Dinur and Friedgut and further developed by Ellis, Keller, and the author.
The notion of cross intersecting set pair system of size $m$, $Big({A_i}_{i=1}^m, {B_i}_{i=1}^mBig)$ with $A_icap B_i=emptyset$ and $A_icap B_j eemptyset$, was introduced by Bollobas and it became an important tool of extremal combinatorics. His clas
Three intersection theorems are proved. First, we determine the size of the largest set system, where the system of the pairwise unions is l-intersecting. Then we investigate set systems where the union of any s sets intersect the union of any t sets
In this paper we report on results of our investigation into the algebraic structure supported by the combinatorial geometry of the cyclohedron. Our new graded algebra structures lie between two well known Hopf algebras: the Malvenuto-Reutenauer alge
Alfeld introduced a subdivision AS(n) of an n-simplex, generalizing the Clough-Tocher split of a triangle. A formula for the dimension of the spline space C^r_k(AS(n)) was conjectured recently by Foucart-Sorokina. We prove that the graded module of C
We are given a set $A$ of buyers, a set $B$ of houses, and for each buyer a preference list, i.e., an ordering of the houses. A house allocation is an injective mapping $tau$ from $A$ to $B$, and $tau$ is strictly better than another house allocation