ترغب بنشر مسار تعليمي؟ اضغط هنا

Experimental signature of collective enhancement in nuclear level density

118   0   0.0 ( 0 )
 نشر من قبل Supriya Mukhopadhyay Dr
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a probable experimental signature of collective enhancement in the nuclear level density (NLD) by measuring the neutron and the giant dipole resonance (GDR) $gamma$ rays emitted from the rare earth $^{169}$Tm compound nucleus populated at 26.1 MeV excitation energy. An enhanced yield is observed in both neutron and $gamma$ ray spectra corresponding to the same excitation energy in the daughter nuclei. The enhancement could only be reproduced by including a collective enhancement factor in the Fermi gas model of NLD to explain the neutron and GDR spectra simultaneously. The experimental results show that the relative enhancement factor is of the order of 10 and the fadeout occurs at $sim$ 14 MeV excitation energy, much before the commonly accepted transition from deformed to spherical shape. We also explain how the collective enhancement contribution changes the inverse level density parameter ($k$) from 8 to 9.5 MeV observed recently in several deformed nuclei.

قيم البحث

اقرأ أيضاً

For nuclear level densities, a modification of an enhanced generalized superfluid model with different collective state enhancement factors is studied. An effect of collective states on forming the temperature is taken into account. The ready-to-use tables for the asymptotic value of $a$-parameter of level density as well as for addition shift to excitation energy are prepared using the chi-square fit of the theoretical values of neutron resonance spacing and cumulative number of low-energy levels to experimental values. The systematics of these parameters as a function of mass number and neutron excess are obtained. The collective state effect on gamma-ray spectra and excitation functions of neutron-induced nuclear reactions is investigated by the use of EMPIRE 3.1 code with modified enhanced generalized superfluid model for nuclear level density.
We have observed a bimodal behaviour of the distribution of the asymmetry between the charges of the two heaviest products resulting from the decay of the quasi-projectile released in binary Xe+Sn and Au+Au collisions from 60 to 100 MeV/u. Event sort ing has been achieved through the transverse energy of light charged particles emitted on the quasi-target side, thus avoiding artificial correlations between the bimodality signal and the sorting variable. Bimodality is observed for intermediate impact parameters for which the quasi-projectile is identified. A simulation shows that the deexcitation step rather than the geometry of the collision appears responsible for the bimodal behaviour. The influence of mid-rapidity emission has been verified. The two bumps of the bimodal distribution correspond to different excitation energies and similar temperatures. It is also shown that it is possible to correlate the bimodality signal with a change in the distribution of the heaviest fragment charge and a peak in potential energy fluctuations. All together, this set of data is coherent with what would be expected in a finite system if the corresponding system in the thermodynamic limit exhibits a first order phase transition.
The nuclear level density and the gamma-ray strength function have been determined for 43Sc in the energy range up to 2 MeV below the neutron separation energy using the Oslo method with the 46Ti(p,alpha)43Sc reaction. A comparison to 45Sc shows that the level density of 43Sc is smaller by an approximately constant factor of two. This behaviour is well reproduced in a microscopical/combinatorial model calculation. The gamma-ray strength function is showing an increase at low gamma-ray energies, a feature which has been observed in several nuclei but which still awaits theoretical explanation.
The energy spectra of neutrons, protons, and alpha-particles have been measured from the d+59Co and 3He+58Fe reactions leading to the same compound nucleus, 61$Ni. The experimental cross sections have been compared to Hauser-Feshbach model calculatio ns using different input level density models. None of them have been found to agree with experiment. It manifests the serious problem with available level density parameterizations especially those based on neutron resonance spacings and density of discrete levels. New level densities and corresponding Fermi-gas parameters have been obtained for reaction product nuclei such as 60Ni,60Co, and 57Fe.
Experimental analyses of moderate temperature nuclear gases produced in the violent collisions of 35 MeV/nucleon$^{64}$Zn projectiles with $^{92}$Mo and $^{197}$Au target nuclei reveal a large degree of alpha particle clustering at low densities. For these gases, temperature and density dependent symmetry energy coefficients have been derived from isoscaling analyses of the yields of nuclei with A $leq 4$. At densities of 0.01 to 0.05 times the ground state density of symmetric nuclear matter, the temperature and density dependent symmetry energies are 10.7 to 13.5 MeV. These values are much larger than those obtained in mean field calculations. They are in quite good agreement with results of a recently proposed Virial Equation of State calculation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا