ترغب بنشر مسار تعليمي؟ اضغط هنا

Experimental determination of the symmetry energy of a low density nuclear gas

63   0   0.0 ( 0 )
 نشر من قبل Kris Hagel
 تاريخ النشر 2006
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Experimental analyses of moderate temperature nuclear gases produced in the violent collisions of 35 MeV/nucleon$^{64}$Zn projectiles with $^{92}$Mo and $^{197}$Au target nuclei reveal a large degree of alpha particle clustering at low densities. For these gases, temperature and density dependent symmetry energy coefficients have been derived from isoscaling analyses of the yields of nuclei with A $leq 4$. At densities of 0.01 to 0.05 times the ground state density of symmetric nuclear matter, the temperature and density dependent symmetry energies are 10.7 to 13.5 MeV. These values are much larger than those obtained in mean field calculations. They are in quite good agreement with results of a recently proposed Virial Equation of State calculation.



قيم البحث

اقرأ أيضاً

162 - D.V. Shetty , S.J. Yennello 2010
The nuclear symmetry energy is a fundamental quantity important for studying the structure of systems as diverse as the atomic nucleus and the neutron star. Considerable efforts are being made to experimentally extract the symmetry energy and its dep endence on nuclear density and temperature. In this article, we review experimental studies carried out up-to-date and their current status.
For the first time primary hot isotope distributions are experimentally reconstructed in intermediate heavy ion collisions and used with antisymmetrized molecular dynamics (AMD) calculations to determine density, temperature and symmetry energy coeff icient in a self-consistent manner. A kinematical focusing method is employed to reconstruct the primary hot fragment yield distributions for multifragmentation events observed in the reaction system $^{64}$Zn + $^{112}$Sn at 40 MeV/nucleon. The reconstructed yield distributions are in good agreement with the primary isotope distributions of AMD simulations. The experimentally extracted values of the symmetry energy coefficient relative to the temperature, $a_{sym}/T$, are compared with those of the AMD simulations with different density dependence of the symmetry energy term. The calculated $a_{sym}/T$ values changes according to the different interactions. By comparison of the experimental values of $a_{sym}/T$ with those of calculations, the density of the source at fragment formation was determined to be $rho /rho_{0} = (0.63 pm 0.03 )$. Using this density, the symmetry energy coefficient and the temperature are determined in a self-consistent manner as $a_{sym} = (24.7 pm 1.9) MeV$ and $T=(4.9 pm 0.2)$ MeV
A new method of accessing information on the symmetry free energy from yields of fragments produced in Fermi-energy heavy-ion collisions is proposed. Furthermore, by means of quantum fluctuation analysis techniques, correlations between extracted sym metry free-energy coefficients with temperature and density were studied. The obtained results are consistent with those of commonly used isoscaling techniques.
We present, for the first time, simultaneous determination of shear viscosity ($eta$) and entropy density ($s$) and thus, $eta/s$ for equilibrated nuclear systems from $A$ $sim$ 30 to $A$ $sim$ 208 at different temperatures. At finite temperature, $e ta$ is estimated by utilizing the $gamma$ decay of the isovector giant dipole resonance populated via fusion evaporation reaction, while $s$ is evaluated from the nuclear level density parameter (${a}$) and nuclear temperature ($T$), determined precisely by the simultaneous measurements of the evaporated neutron energy spectra and the compound nuclear angular momenta. The transport parameter $eta$ and the thermodynamic parameter $s$ both increase with temperature resulting in a mild decrease of $eta$/$s$ with temperature. The extracted $eta$/$s$ is also found to be independent of the neutron-proton asymmetry at a given temperature. Interestingly, the measured $eta$/$s$ values are comparable to that of the high-temperature quark-gluon plasma, pointing towards the fact that strong fluidity may be the universal feature of the strong interaction of many-body quantum systems.
Exposure of highly deuterated materials to a low-energy (nom. 2 MeV) photon beam resulted in nuclear activity of both the parent metals of hafnium and erbium and a witness material (molybdenum) mixed with the reactants. Gamma spectral analysis of all deuterated materials, ErD2.8-C36D74-Mo and HfD2-C36D74-Mo, showed that nuclear processes had occurred as shown by unique gamma signatures. For the deuterated erbium specimens, posttest gamma spectra showed evidence of radioisotopes of erbium (163Er and 171Er) and of molybdenum (99Mo and 101Mo) and by beta decay, technetium (99mTc and 101Tc). For the deuterated hafnium specimens, posttest gamma spectra showed evidence of radioisotopes of hafnium (180mHf and 181Hf) and molybdenum (99Mo and 101Mo), and by beta decay, technetium (99mTc and 101Tc). In contrast, when either the hydrogenated or non-gas-loaded erbium or hafnium materials were exposed to the gamma flux, the gamma spectra revealed no new isotopes. Neutron activation materials showed evidence of thermal and epithermal neutrons. CR-39 solid-state nuclear track detectors showed evidence of fast neutrons with energies between 1.4 and 2.5 MeV and several instances of triple tracks, indicating greater than 10 MeV neutrons. Further study is required to determine the mechanism causing the nuclear activity
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا