ترغب بنشر مسار تعليمي؟ اضغط هنا

Confidence from Invariance to Image Transformations

122   0   0.0 ( 0 )
 نشر من قبل Yuval Bahat
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We develop a technique for automatically detecting the classification errors of a pre-trained visual classifier. Our method is agnostic to the form of the classifier, requiring access only to classifier responses to a set of inputs. We train a parametric binary classifier (error/correct) on a representation derived from a set of classifier responses generated from multiple copies of the same input, each subject to a different natural image transformation. Thus, we establish a measure of confidence in classifiers decision by analyzing the invariance of its decision under various transformations. In experiments with multiple data sets (STL-10,CIFAR-100,ImageNet) and classifiers, we demonstrate new state of the art for the error detection task. In addition, we apply our technique to novelty detection scenarios, where we also demonstrate state of the art results.

قيم البحث

اقرأ أيضاً

We propose an approach to distinguish between correct and incorrect image classifications. Our approach can detect misclassifications which either occur $it{unintentionally}$ (natural errors), or due to $it{intentional~adversarial~attacks}$ (adversar ial errors), both in a single $it{unified~framework}$. Our approach is based on the observation that correctly classified images tend to exhibit robust and consistent classifications under certain image transformations (e.g., horizontal flip, small image translation, etc.). In contrast, incorrectly classified images (whether due to adversarial errors or natural errors) tend to exhibit large variations in classification results under such transformations. Our approach does not require any modifications or retraining of the classifier, hence can be applied to any pre-trained classifier. We further use state of the art targeted adversarial attacks to demonstrate that even when the adversary has full knowledge of our method, the adversarial distortion needed for bypassing our detector is $it{no~longer~imperceptible~to~the~human~eye}$. Our approach obtains state-of-the-art results compared to previous adversarial detection methods, surpassing them by a large margin.
This paper focuses on webly supervised learning (WSL), where datasets are built by crawling samples from the Internet and directly using search queries as web labels. Although WSL benefits from fast and low-cost data collection, noises in web labels hinder better performance of the image classification model. To alleviate this problem, in recent works, self-label supervised loss $mathcal{L}_s$ is utilized together with webly supervised loss $mathcal{L}_w$. $mathcal{L}_s$ relies on pseudo labels predicted by the model itself. Since the correctness of the web label or pseudo label is usually on a case-by-case basis for each web sample, it is desirable to adjust the balance between $mathcal{L}_s$ and $mathcal{L}_w$ on sample level. Inspired by the ability of Deep Neural Networks (DNNs) in confidence prediction, we introduce Self-Contained Confidence (SCC) by adapting model uncertainty for WSL setting, and use it to sample-wisely balance $mathcal{L}_s$ and $mathcal{L}_w$. Therefore, a simple yet effective WSL framework is proposed. A series of SCC-friendly regularization approaches are investigated, among which the proposed graph-enhanced mixup is the most effective method to provide high-quality confidence to enhance our framework. The proposed WSL framework has achieved the state-of-the-art results on two large-scale WSL datasets, WebVision-1000 and Food101-N. Code is available at https://github.com/bigvideoresearch/SCC.
82 - Wenyan Cong , Xinhao Tao , Li Niu 2021
Given a composite image, image harmonization aims to adjust the foreground to make it compatible with the background. High-resolution image harmonization is in high demand, but still remains unexplored. Conventional image harmonization methods learn global RGB-to-RGB transformation which could effortlessly scale to high resolution, but ignore diverse local context. Recent deep learning methods learn the dense pixel-to-pixel transformation which could generate harmonious outputs, but are highly constrained in low resolution. In this work, we propose a high-resolution image harmonization network with Collaborative Dual Transformation (CDTNet) to combine pixel-to-pixel transformation and RGB-to-RGB transformation coherently in an end-to-end framework. Our CDTNet consists of a low-resolution generator for pixel-to-pixel transformation, a color mapping module for RGB-to-RGB transformation, and a refinement module to take advantage of both. Extensive experiments on high-resolution image harmonization dataset demonstrate that our CDTNet strikes a good balance between efficiency and effectiveness.
Contrastive learning has recently shown immense potential in unsupervised visual representation learning. Existing studies in this track mainly focus on intra-image invariance learning. The learning typically uses rich intra-image transformations to construct positive pairs and then maximizes agreement using a contrastive loss. The merits of inter-image invariance, conversely, remain much less explored. One major obstacle to exploit inter-image invariance is that it is unclear how to reliably construct inter-image positive pairs, and further derive effective supervision from them since there are no pair annotations available. In this work, we present a rigorous and comprehensive study on inter-image invariance learning from three main constituting components: pseudo-label maintenance, sampling strategy, and decision boundary design. Through carefully-designed comparisons and analysis, we propose a unified and generic framework that supports the integration of unsupervised intra- and inter-image invariance learning. With all the obtained recipes, our final model, namely InterCLR, shows consistent improvements over state-of-the-art intra-image invariance learning methods on multiple standard benchmarks. Codes will be released at https://github.com/open-mmlab/OpenSelfSup.
100 - Yu Zeng , Zhe Lin , Jimei Yang 2020
Existing image inpainting methods often produce artifacts when dealing with large holes in real applications. To address this challenge, we propose an iterative inpainting method with a feedback mechanism. Specifically, we introduce a deep generative model which not only outputs an inpainting result but also a corresponding confidence map. Using this map as feedback, it progressively fills the hole by trusting only high-confidence pixels inside the hole at each iteration and focuses on the remaining pixels in the next iteration. As it reuses partial predictions from the previous iterations as known pixels, this process gradually improves the result. In addition, we propose a guided upsampling network to enable generation of high-resolution inpainting results. We achieve this by extending the Contextual Attention module to borrow high-resolution feature patches in the input image. Furthermore, to mimic real object removal scenarios, we collect a large object mask dataset and synthesize more realistic training data that better simulates user inputs. Experiments show that our method significantly outperforms existing methods in both quantitative and qualitative evaluations. More results and Web APP are available at https://zengxianyu.github.io/iic.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا