ﻻ يوجد ملخص باللغة العربية
Dealing with the shear size and complexity of todays massive data sets requires computational platforms that can analyze data in a parallelized and distributed fashion. A major bottleneck that arises in such modern distributed computing environments is that some of the worker nodes may run slow. These nodes a.k.a.~stragglers can significantly slow down computation as the slowest node may dictate the overall computational time. A recent computational framework, called encoded optimization, creates redundancy in the data to mitigate the effect of stragglers. In this paper we develop novel mathematical understanding for this framework demonstrating its effectiveness in much broader settings than was previously understood. We also analyze the convergence behavior of iterative encoded optimization algorithms, allowing us to characterize fundamental trade-offs between convergence rate, size of data set, accuracy, computational load (or data redundancy), and straggler toleration in this framework.
The study of interactive proofs in the context of distributed network computing is a novel topic, recently introduced by Kol, Oshman, and Saxena [PODC 2018]. In the spirit of sequential interactive proofs theory, we study the power of distributed int
Trade-offs between accuracy and efficiency are found in multiple non-computing domains, such as law and public health, which have developed rules and heuristics to guide how to balance the two in conditions of uncertainty. While accuracy-efficiency t
We study privacy-utility trade-offs where users share privacy-correlated useful information with a service provider to obtain some utility. The service provider is adversarial in the sense that it can infer the users private information based on the
Unlike traditional file transfer where only total delay matters, streaming applications impose delay constraints on each packet and require them to be in order. To achieve fast in-order packet decoding, we have to compromise on the throughput. We stu
In this paper, we consider a single-cell multi-user orthogonal frequency division multiple access (OFDMA) network with one unmanned aerial vehicle (UAV), which works as an amplify-and-forward relay to improve the quality-of-service (QoS) of the user