ترغب بنشر مسار تعليمي؟ اضغط هنا

Influence of hydrodynamic interactions on stratification in drying mixtures

111   0   0.0 ( 0 )
 نشر من قبل Antonia Statt
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Nonequilibrium molecular dynamics simulations are used to investigate the influence of hydrodynamic interactions on vertical segregation (stratification) in drying mixtures of long and short polymer chains. In agreement with previous computer simulations and theoretical modeling, the short polymers stratify on top of the long polymers at the top of the drying film when hydrodynamic interactions between polymers are neglected. However, no stratification occurs at the same drying conditions when hydrodynamic interactions are incorporated through an explicit solvent model. Our analysis demonstrates that models lacking hydrodynamic interactions do not faithfully represent stratification in drying mixtures, in agreement with recent analysis of an idealized model for diffusiophoresis, and must be incorporated into such models in future.



قيم البحث

اقرأ أيضاً

185 - Martin Rex , Hartmut Lowen 2007
The influence of hydrodynamic interactions on lane formation of oppositely charged driven colloidal suspensions is investigated using Brownian dynamics computer simulations performed on the Rotne-Prager level of the mobility tensor. Two cases are con sidered, namely sedimentation and electrophoresis. In the latter case the Oseen contribution to the mobility tensor is screened due to the opposite motion of counterions. The simulation results are compared to that resulting from simple Brownian dynamics where hydrodynamic interactions are neglected. For sedimentation, we find that hydrodynamic interactions strongly disfavor laning. In the steady-state of lanes, a macroscopic phase separation of lanes is observed. This is in marked contrast to the simple Brownian case where a finite size of lanes was obtained in the steady-state. For strong Coulomb interactions between the colloidal particles a lateral square lattice of oppositely driven lanes is stable similar to the simple Brownian dynamics. In an electric field, on the other hand, the behavior is found in qualitative and quantitative accordance with the case of neglected hydrodynamics.
In this letter, we investigate several aspects related to the effect of hydrodynamics interactions on phase separation-induced gelation of colloidal particles. We explain physically the observation of Tanaka and Araki[Phys. Rev. Lett. {bf 85}, 1338 ( 2000)] of hydrodynamic stabilization of cellular network structures in two dimensions. We demonstrate that hydrodynamic interactions have only a minor quantitative influence on the structure of transient gels in three dimensions. We discuss some experimental implications of our results.
As first explained by the classic Asakura-Oosawa (AO) model, effective attractive forces between colloidal particles induced by depletion of nonadsorbing polymers can drive demixing of colloid-polymer mixtures into colloid-rich and colloid-poor phase s, with practical relevance for purification of water, stability of foods and pharmaceuticals, and macromolecular crowding in biological cells. By idealizing polymer coils as effective penetrable spheres, the AO model qualitatively captures the influence of polymer depletion on thermodynamic phase behavior of colloidal suspensions. In previous work, we extended the AO model to incorporate aspherical polymer conformations and showed that fluctuating shapes of random-walk coils can significantly modify depletion potentials [W. K. Lim and A. R. Denton, Soft Matter 12, 2247 (2016); J. Chem. Phys. 144, 024904 (2016)]. We further demonstrated that the shapes of polymers in crowded environments depend sensitively on solvent quality [W. J. Davis and A. R. Denton, J. Chem. Phys. 149, 124901 (2018)]. Here we apply Monte Carlo simulation to analyze the influence of solvent quality on depletion potentials in mixtures of hard sphere colloids and nonadsorbing polymer coils, modeled as ellipsoids whose principal radii fluctuate according to random-walk statistics. We consider both self-avoiding and non-self-avoiding random walks, corresponding to polymers in good and theta solvents, respectively. Our simulation results demonstrate that depletion of polymers of equal molecular weight induces much stronger attraction between colloids in good solvents than in theta solvents and confirm that depletion interactions are significantly influenced by aspherical polymer conformations.
We investigate the influence of polymer-pore interactions on the translocation dynamics using Langevin dynamics simulations. An attractive interaction can greatly improve translocation probability. At the same time, it also increases translocation ti me slowly for weak attraction while exponential dependence is observed for strong attraction. For fixed driving force and chain length the histogram of translocation time has a transition from Gaussian distribution to long-tailed distribution with increasing attraction. Under a weak driving force and a strong attractive force, both the translocation time and the residence time in the pore show a non-monotonic behavior as a function of the chain length. Our simulations results are in good agreement with recent experimental data.
85 - Christoph Lutz 2005
We experimentally and theoretically investigate the collective behavior of three colloidal particles that are driven by a constant force along a toroidal trap. Due to hydrodynamic interactions, a characteristic limit cycle is observed. When we additi onally apply a periodic sawtooth potential, we find a novel caterpillar-like motional sequence that is dominated by hydrodynamic interactions and promotes the surmounting of potential barriers by the particles.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا