ترغب بنشر مسار تعليمي؟ اضغط هنا

Hot Star Extension to the Hubble Space Telescope Stellar Spectral Library

112   0   0.0 ( 0 )
 نشر من قبل Guy Worthey
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Libraries of stellar spectra find many uses in astrophysics, from photometric calibration to stellar population synthesis. We present low resolution spectra of 40 stars from 0.2 micrometers (ultraviolet) to 1.0 micrometers (near infrared) with excellent fluxing. The stars include normal O-type stars, helium-burning stars, and post-asymptotic giant branch (PAGB) stars. Spectra were obtained with the Space Telescope Imaging Spectrograph (STIS) installed in the Hubble Space Telescope (HST) using three low resolution gratings, G230LB, G430L, and G750L. Cosmic ray hits and fringing in the red were corrected. A correction for scattered light was applied, significant only for our coolest stars. Cross-correlation was used to bring the spectra to a common, final, zero velocity wavelength scale. Finally, synthetic stellar spectra were used to estimate line of sight dust extinction to each star, and a five-parameter dust extinction model was fit, or a one-parameter fit in the case of low extinction. These spectra dovetail with the similar Next Generation Stellar Library (NGSL) spectra, extending the NGSLs coverage of stellar parameters, and extending to helium burning stars and stars that do not fuse. The fitted dust extinction model showed considerable variation from star to star, indicating variations in dust properties for different lines of sight. Interstellar absorption lines are present in most stars, notably MgII.



قيم البحث

اقرأ أيضاً

Bayesian atmospheric retrieval tools can place constraints on the properties of brown dwarfs and hot Jupiters atmospheres. To fully exploit these methods, high signal-to-noise spectral libraries with well-understood uncertainties are essential. We pr esent a high signal-to-noise spectral library (1.10-1.69 microns) of the thermal emission of 76 brown dwarfs and hot Jupiters. All our spectra have been acquired with the Hubble Space Telescopes Wide Field Camera 3 instrument and its G141 grism. The near-infrared spectral types of these objects range from L4 to Y1. Eight of our targets have estimated masses below the deuterium-burning limit. We analyze the database to identify peculiar objects and/or multiple systems, concluding that this sample includes two very-low-surface-gravity objects and five intermediate-surface-gravity objects. In addition, spectral indices designed to search for composite atmosphere brown dwarfs, indicate that eight objects in our sample are strong candidates to have such atmospheres. None of these objects are overluminous, thus their composite atmospheres are unlikely a companion-induced artifact. Five of the eight confirmed candidates have been reported as photometrically variable, suggesting that composite atmospheric indices are useful in identifying brown dwarfs with strongly heterogeneous cloud covers. We compare hot Jupiters and brown dwarfs in a near-infrared color-magnitude diagram. We confirm that the coldest hot Jupiters in our sample have spectra similar to mid-L dwarfs, and the hottest hot Jupiters have spectra similar to those of M-dwarfs. Our sample provides a uniform dataset of a broad range of ultracool atmospheres, allowing large-scale, comparative studies, and providing a HST legacy spectral library.
MEGARA (Multi Espectr{o}grafo en GTC de Alta Resoluci{o}n para Astronom{i}a) is an optical (3650~--~9750AA), fibre-fed, medium-high spectral resolution (R = 6000, 12000, 20000) instrument for the GTC 10.4m telescope, commissioned in the summer of 201 7, and currently in operation. The scientific exploitation of MEGARA demands a stellar-spectra library to interpret galaxy data and to estimate the contribution of the stellar populations. This paper introduces the MEGARA-GTC spectral library, detailing the rationale behind the catalogue building. We present the spectra of 97 stars (21 individual stars and 56 members of the globular cluster M15, being both sub-samples taken during the commissioning runs; and 20 stars from our on-going GTC Open-Time program). The spectra have R~=~20000 in the HR-R and HR-I setups, centred at 6563 and 8633~AA respectively. We describe the procedures to reduce and analyse the data. Then, we determine the best-fitting theoretical models to each spectrum through a $chi^{2}$ minimisation technique to derive the stellar physical parameters and discuss the results. We have also measured some absorption lines and indices. Finally, this article introduces our project to complete the library and the database to make the spectra available to the community.
We present a 0.8 -5 micron spectral library of 210 cool stars observed at a resolving power of R = lambda / Delta lambda ~ 2000 with the medium-resolution infrared spectrograph, SpeX, at the 3.0 m NASA Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii. The stars have well established MK spectral classifications and are mostly restricted to near-solar metallicities. The sample contains the F, G, K, and M spectral types with luminosity classes between I and V, but also includes some AGB, carbon, and S stars. In contrast to some other spectral libraries, the continuum shape of the spectra are measured and preserved in the data reduction process. The spectra are absolutely flux calibrated using Two Micron All Sky Survey (2MASS) photometry. Potential uses of the library include studying the physics of cool stars, classifying and studying embedded young clusters and optically obscured regions of the Galaxy, evolutionary population synthesis to study unresolved stellar populations in optically-obscured regions of galaxies, and synthetic photometry. The library is available in digital form from the IRTF website.
83 - S. S. Larsen 2019
We present new deep imaging of the central regions of the remote globular cluster NGC 2419, obtained with the F343N and F336W filters of HST/WFC3. The new data are combined with archival imaging to constrain nitrogen and helium abundance variations w ithin the cluster. We find a clearly bimodal distribution of the nitrogen-sensitive F336W-F343N colours of red giants, from which we estimate that about 55% of the giants belong to a population with about normal (field-like) nitrogen abundances (P1), while the remaining 45% belong to a nitrogen-rich population (P2). On average, the P2 stars are more He-rich than the P1 stars, with an estimated mean difference of Delta Y = 0.05, but the P2 stars exhibit a significant spread in He content and some may reach Delta Y = 0.13. A smaller He spread may be present also for the P1 stars. Additionally, stars with spectroscopically determined low [Mg/Fe] ratios ([Mg/Fe]<0) are generally associated with P2. We find the P2 stars to be slightly more centrally concentrated in NGC 2419 with a projected half-number radius of about 10% less than for the P1 stars, but the difference is not highly significant (p=0.05). We find evidence of rotation for the P1 stars, whereas the results are inconclusive for the P2 stars, which are consistent with no rotation as well as the same average rotation found for the P1 stars. Because of the long relaxation time scale of NGC 2419, the radial trends and kinematic properties of the populations are expected to be relatively unaffected by dynamical evolution. Hence, they provide constraints on formation scenarios for multiple populations, which must account not only for the presence of He spreads within sub-populations identified via CNO variations, but also for the relatively modest differences in the spatial distributions and kinematics of the populations.
A number of scenarios for the formation of multiple populations in globular clusters (GCs) predict that second generation (2G) stars form in a compact and dense subsystem embedded in a more extended first-generation (1G) system. If these scenarios ar e accurate, a consequence of the denser 2G formation environment is that 2G binaries should be more significantly affected by stellar interactions and disrupted at a larger rate than 1G binaries. The fractions and properties of binary stars can thus provide a dynamical fingerprint of the formation epoch of multiple-population GCs and their subsequent dynamical evolution. We investigate the connection between binaries and multiple populations in five GCs, NGC 288, NGC 6121 (M 4), NGC 6352, NGC 6362, and NGC 6838 (M 71). To do this, we introduce a new method based on the comparison of Hubble Space Telescope observations of binaries in the F275W, F336W, F438W, F606W and F814W filters with a large number of simulated binaries. In the inner regions probed by our data we do not find large differences between the local 1G and the 2G binary incidences in four of the studied clusters, the only exception being M 4 where the 1G binary incidence is about three times larger than the 2G incidence. The results found are in general agreement with the results of simulations predicting significant differences in the global 1G and 2G incidences and in the local values in the clusters outer regions but similar incidences in the inner regions. The significant difference found in M 4 is consistent with simulations with a larger fraction of wider binaries. Our analysis also provides the first evidence of mixed (1G-2G) binaries, a population predicted by numerical simulations to form in a clusters inner regions as a result of stellar encounters during which one component of a binary is replaced by a star of a different population.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا