ترغب بنشر مسار تعليمي؟ اضغط هنا

Joint Communication, Computation, Caching, and Control in Big Data Multi-access Edge Computing

65   0   0.0 ( 0 )
 نشر من قبل Anselme Ndikumana
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The concept of multi-access edge computing (MEC) has been recently introduced to supplement cloud computing by deploying MEC servers to the network edge so as to reduce the network delay and alleviate the load on cloud data centers. However, compared to a resourceful cloud, an MEC server has limited resources. When each MEC server operates independently, it cannot handle all of the computational and big data demands stemming from the users devices. Consequently, the MEC server cannot provide significant gains in overhead reduction due to data exchange between users devices and remote cloud. Therefore, joint computing, caching, communication, and control (4C) at the edge with MEC server collaboration is strongly needed for big data applications. In order to address these challenges, in this paper, the problem of joint 4C in big data MEC is formulated as an optimization problem whose goal is to maximize the bandwidth saving while minimizing delay, subject to the local computation capability of user devices, computation deadline, and MEC resource constraints. However, the formulated problem is shown to be non-convex. To make this problem convex, a proximal upper bound problem of the original formulated problem that guarantees descent to the original problem is proposed. To solve the proximal upper bound problem, a block successive upper bound minimization (BSUM) method is applied. Simulation results show that the proposed approach increases bandwidth-saving and minimizes delay while satisfying the computation deadlines.



قيم البحث

اقرأ أيضاً

Recently, along with the rapid development of mobile communication technology, edge computing theory and techniques have been attracting more and more attentions from global researchers and engineers, which can significantly bridge the capacity of cl oud and requirement of devices by the network edges, and thus can accelerate the content deliveries and improve the quality of mobile services. In order to bring more intelligence to the edge systems, compared to traditional optimization methodology, and driven by the current deep learning techniques, we propose to integrate the Deep Reinforcement Learning techniques and Federated Learning framework with the mobile edge systems, for optimizing the mobile edge computing, caching and communication. And thus, we design the In-Edge AI framework in order to intelligently utilize the collaboration among devices and edge nodes to exchange the learning parameters for a better training and inference of the models, and thus to carry out dynamic system-level optimization and application-level enhancement while reducing the unnecessary system communication load. In-Edge AI is evaluated and proved to have near-optimal performance but relatively low overhead of learning, while the system is cognitive and adaptive to the mobile communication systems. Finally, we discuss several related challenges and opportunities for unveiling a promising upcoming future of In-Edge AI.
Recently, Mobile-Edge Computing (MEC) has arisen as an emerging paradigm that extends cloud-computing capabilities to the edge of the Radio Access Network (RAN) by deploying MEC servers right at the Base Stations (BSs). In this paper, we envision a c ollaborative joint caching and processing strategy for on-demand video streaming in MEC networks. Our design aims at enhancing the widely used Adaptive BitRate (ABR) streaming technology, where multiple bitra
This paper studies edge caching in fog computing networks, where a capacity-aware edge caching framework is proposed by considering both the limited fog cache capacity and the connectivity capacity of base stations (BSs). By allowing cooperation betw een fog nodes and cloud data center, the average-download-time (ADT) minimization problem is formulated as a multi-class processor queuing process. We prove the convexity of the formulated problem and propose an Alternating Direction Method of Multipliers (ADMM)-based algorithm that can achieve the minimum ADT and converge much faster than existing algorithms. Simulation results demonstrate that the allocation of fog cache capacity and connectivity capacity of BSs needs to be balanced according to the network status. While the maximization of the edge-cache-hit-ratio (ECHR) by utilizing all available fog cache capacity is helpful when the BS connectivity capacity is sufficient, it is preferable to keep a lower ECHR and allocate more traffic to the cloud when the BS connectivity capacity is deficient.
To realize cooperative computation and communication in a relay mobile edge computing system, we develop a hybrid relay forward protocol, where we seek to balance the execution delay and network energy consumption. The problem is formulated as a nond ifferentible optimization problem which is nonconvex with highly coupled constraints. By exploiting the problem structure, we propose a lightweight algorithm based on inexact block coordinate descent method. Our results show that the proposed algorithm exhibits much faster convergence as compared with the popular concave-convex procedure based algorithm, while achieving good performance.
Mobile edge computing (MEC) is considered as an efficient method to relieve the computation burden of mobile devices. In order to reduce the energy consumption and time delay of mobile devices (MDs) in MEC, multiple users multiple input and multiple output (MU-MIMO) communications is considered to be applied to the MEC system. The purpose of this paper is to minimize the weighted sum of energy consumption and time delay of MDs by jointly considering the offloading decision and MU-MIMO beamforming problems. And the resulting optimization problem is a mixed-integer non-linear programming problem, which is NP-hard. To solve the optimization problem, a semidefinite relaxation based algorithm is proposed to solve the offloading decision problem. Then, the MU-MIMO beamforming design problem is handled with a newly proposed fractional programming method. Simulation results show that the proposed algorithms can effectively reduce the energy consumption and time delay of the computation offloading.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا