ﻻ يوجد ملخص باللغة العربية
Ptychography, a form of Coherent Diffractive Imaging, is used with short wavelengths (e.g. X-rays, electron beams) to achieve high-resolution image reconstructions. One of the limiting factors for the reconstruction quality is the accurate knowledge of the illumination probe positions. Recently, many advances have been made to relax the requirement for the probe positions accuracy. Here, we analyze and demonstrate a straightforward approach that can be used to correct the probe positions with sub-pixel accuracy. Simulations and experimental results with visible light are presented in this work.
Incoherent Fourier ptychography (IFP) is a newly developed super-resolution method, where accurate knowledge of translation positions is essential for image reconstruction.To release this limitation, we propose a preprocessing algorithm capable of ex
The Gas Pixel Detector was designed and built as a focal plane instrument for X-ray polarimetry of celestial sources, the last unexplored subtopics of X-ray astronomy. It promises to perform detailed and sensitive measurements resolving extended sour
We present a parameter retrieval method which combines ptychography and additional prior knowledge about the object. The proposed method is applied to two applications: (1) parameter retrieval of small particles from Fourier ptychographic dark field
We propose a novel method for non-rigid 3-D motion correction of orthogonally raster-scanned optical coherence tomography angiography volumes. This is the first approach that aligns predominantly axial structural features like retinal layers and tran
In order to determine the 3D structure of a thick sample, researchers have recently combined ptychography (for high resolution) and tomography (for 3D imaging) in a single experiment. 2-step methods are usually adopted for reconstruction, where the p