ﻻ يوجد ملخص باللغة العربية
We present a parameter retrieval method which combines ptychography and additional prior knowledge about the object. The proposed method is applied to two applications: (1) parameter retrieval of small particles from Fourier ptychographic dark field measurements; (2) parameter retrieval of retangule with real-space ptychography. The influence of Poisson noise is discussed in the second part of the paper. The Cram{e}r Rao Lower Bound in both two applications is computed and Monte Carlo analysis is used to verify the calculated lower bound. With the computation results we report the lower bound for various noise levels and the correlation of particles in Application 1. For Application 2 the correlation of parameters of the rectangule is discussed.
Incoherent Fourier ptychography (IFP) is a newly developed super-resolution method, where accurate knowledge of translation positions is essential for image reconstruction.To release this limitation, we propose a preprocessing algorithm capable of ex
The pressing need for the detailed wavefront properties of ultra-bright and ultra-short pulses produced by free-electron lasers (FELs) has spurred the development of several complementary characterization approaches. Here we present a method based on
While characterization of coherent wavefields is essential to laser, x-ray and electron imaging, sensors measure the squared magnitude of the field, rather than the field itself. Holography or phase retrieval must be used to characterize the field. T
Intensity interferometry (II) exploits the second-order correlation to acquire the spatial frequency information of an object, which has been used to observe distant stars since 1950s. However, due to unreliability of employed imaging reconstruction
The success of ptychographic imaging experiments strongly depends on achieving high signal-to-noise ratio. This is particularly important in nanoscale imaging experiments when diffraction signals are very weak and the experiments are accompanied by s