ﻻ يوجد ملخص باللغة العربية
Because of their complex Fermi surfaces, the identification of the physical phenomena contributing to electronic scattering in the Fe-based superconductors is a difficult task. Here, we report on the electrical resistivity, magnetoresistance, and Hall effect in two series of BaFe$_{2-x}$T$_x$As$_2$ (T = Co, Ni) crystals with different values of $x$. The T contents were chosen so that the majority of the investigated samples present an intermediate magnetically ordered state and a superconducting ground state. We interpret the obtained results in terms of scattering of charge carriers by magnetic excitations instead of describing them as resulting uniquely from effects related to multiple-band conduction. Our samples are single crystals from the structural point of view and their overall magnetotransport properties are dominated by a single magnetic state.
We study systematically transport, susceptibility and heat capacity for BaFe$_{2-x}$Co$_x$As$_2$ single crystals. In the underdoped region, spin density wave (SDW) transition is observed in both resistivity and susceptibility. The magnetic susceptibi
We use neutron diffraction and muon spin relaxation to study the effect of in-plane uniaxial pressure on the antiferromagnetic (AF) orthorhombic phase in BaFe$_2$As$_2$ and its Co- and Ni-substituted members near optimal superconductivity. In the low
We have systematically studied the low-temperature specific heat of the BaFe$_{2-x}$Ni$_x$As$_2$ single crystals covering the whole superconducting dome. Using the nonsuperconducting heavily overdoped x = 0.3 sample as a reference for the phonon cont
The electronic structure inhomogeneities in Co, Ni, and Cr doped BaFe2As2 122 single crystals are compared using scanning tunneling microscopy/spectroscopy (STM/S) at the nanoscale within three bulk property regions in the phase diagram: a pure super
We have systematically studied the nematic fluctuations in the electron-doped iron-based superconductor BaFe$_{2-x}$Ni$_x$As$_2$ by measuring the in-plane resistance change under uniaxial pressure. While the nematic quantum critical point can be iden