ترغب بنشر مسار تعليمي؟ اضغط هنا

Uniaxial pressure effect on the magnetic ordered moment and transition temperatures in BaFe$_{2-x}T_x$As$_2$ ($T=$Co, Ni)

181   0   0.0 ( 0 )
 نشر من قبل David Tam
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use neutron diffraction and muon spin relaxation to study the effect of in-plane uniaxial pressure on the antiferromagnetic (AF) orthorhombic phase in BaFe$_2$As$_2$ and its Co- and Ni-substituted members near optimal superconductivity. In the low temperature AF ordered state, uniaxial pressure necessary to detwin the orthorhombic crystals also increases the magnetic ordered moment, reaching an 11$%$ increase under 40 MPa for BaFe$_{1.9}$Co$_{0.1}$As$_2$, and a 15$%$ increase for BaFe$_{1.915}$Ni$_{0.085}$As$_2$. We also observe an increase of the AF ordering temperature ($T_N$) of about 0.25 K/MPa in all compounds, consistent with density functional theory calculations that reveal better Fermi surface nesting for itinerant electrons under uniaxial pressure. The doping dependence of the magnetic ordered moment is captured by combining dynamical mean field theory with density functional theory, suggesting that the pressure-induced moment increase near optimal superconductivity is closely related to quantum fluctuations and the nearby electronic nematic phase.



قيم البحث

اقرأ أيضاً

A small in-plane external uniaxial pressure has been widely used as an effective method to acquire single domain iron pnictide BaFe$_2$As$_2$, which exhibits twin-domains without uniaxial strain below the tetragonal-to-orthorhombic structural (nemati c) transition temperature $T_s$. Although it is generally assumed that such a pressure will not affect the intrinsic electronic/magnetic properties of the system, it is known to enhance the antiferromagnetic (AF) ordering temperature $T_N$ ($<T_s$) and create in-plane resistivity anisotropy above $T_s$. Here we use neutron polarization analysis to show that such a strain on BaFe$_2$As$_2$ also induces a static or quasi-static out-of-plane ($c$-axis) AF order and its associated critical spin fluctuations near $T_N/T_s$. Therefore, uniaxial pressure necessary to detwin single crystals of BaFe$_2$As$_2$ actually rotates the easy axis of the collinear AF order near $T_N/T_s$, and such effect due to spin-orbit coupling must be taken into account to unveil the intrinsic electronic/magnetic properties of the system.
We have systematically studied the low-temperature specific heat of the BaFe$_{2-x}$Ni$_x$As$_2$ single crystals covering the whole superconducting dome. Using the nonsuperconducting heavily overdoped x = 0.3 sample as a reference for the phonon cont ribution to the specific heat, we find that the normal-state electronic specific heats in the superconducting samples may have a nonlinear temperature dependence, which challenges previous results in the electron-doped Ba-122 iron-based superconductors. A model based on the presence of ferromagnetic spin fluctuations may explain the data between x = 0.1 and x = 0.15, suggesting the important role of Fermi-surface topology in understanding the normal-state electronic states.
Application of pressures or electron-doping through Co substitution into Fe sites transforms the itinerant antiferromagnet BaFe(2)As(2) into a superconductor with the Tc exceeding 20K. We carried out systematic transport measurements of BaFe(2-x)Co(x )As(2) superconductors in pressures up to 2.5GPa, and elucidate the interplay between the effects of electron-doping and pressures. For the underdoped sample with nominal composition x = 0.08, application of pressure strongly suppresses a magnetic instability while enhancing Tc by nearly a factor of two from 11K to 21K. In contrast, the optimally doped x=0.20 sample shows very little enhancement of Tc=22K under applied pressure. Our results strongly suggest that the proximity to a magnetic instability is the key to the mechanism of superconductivity in iron-pnictides.
Because of their complex Fermi surfaces, the identification of the physical phenomena contributing to electronic scattering in the Fe-based superconductors is a difficult task. Here, we report on the electrical resistivity, magnetoresistance, and Hal l effect in two series of BaFe$_{2-x}$T$_x$As$_2$ (T = Co, Ni) crystals with different values of $x$. The T contents were chosen so that the majority of the investigated samples present an intermediate magnetically ordered state and a superconducting ground state. We interpret the obtained results in terms of scattering of charge carriers by magnetic excitations instead of describing them as resulting uniquely from effects related to multiple-band conduction. Our samples are single crystals from the structural point of view and their overall magnetotransport properties are dominated by a single magnetic state.
127 - X. F. Wang , T. Wu , G. Wu 2008
We study systematically transport, susceptibility and heat capacity for BaFe$_{2-x}$Co$_x$As$_2$ single crystals. In the underdoped region, spin density wave (SDW) transition is observed in both resistivity and susceptibility. The magnetic susceptibi lity shows unusual T-linear dependence above SDW transition up to 700 K. With Co doping, SDW ordering is gradually suppressed and superconductivity emerges with a dome-like shape. Electrical transport, specific heat and magnetic susceptibility indicate that SDW and superconductivity coexist in the sample BaFe$_{2-x}$Co$_x$As$_2$ around x = 0.17, being similar with (Ba,K)Fe$_2$As$_2$. When x$>$0.34, the superconductivity completely disappears. A crossover from non-Fermi-liquid state to Fermi-liquid state is observed with increasing Co doping. A detailed electronic phase diagram about evolution from SDW to superconducting state is given.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا