ﻻ يوجد ملخص باللغة العربية
In this paper, we provide a new proof of the stable Adams conjecture. Our proof constructs a canonical null-homotopy of the stable J-homomorphism composed with a virtual Adams operation, by applying the $mathrm{K}$-theory functor to a multi-natural transformation. We also point out that the original proof of the stable Adams conjecture is incorrect and present a correction. This correction is crucial to our main application. We settle the question on the height of higher associative structures on the mod $p^k$ Moore spectrum $mathrm{M}_p(k)$ at odd primes. More precisely, for any odd prime $p$, we show that $mathrm{M}_p(k)$ admits a Thomified $mathbb{A}_n$-structure if and only if $n < p^k$. We also prove a weaker result for $p=2$.
We develop a rigidity criterion to show that in simplicial model categories with a compatible symmetric monoidal structure, operad structures can be automatically lifted along certain maps. This is applied to obtain an unpublished result of M. J. Hop
The theory of abstract kernels in non-trivial extensions for many kinds of algebraical objects, such as groups, rings and graded rings, associative algebras, Lie algebras, restricted Lie algebras, DG-algebras and DG-Lie algebras, has been widely stud
We prove that exterior powers of (skew-)symmetric bundles induce a $lambda$-ring structure on the ring $GW^0(X) oplus GW^2(X)$, when $X$ is a scheme where $2$ is invertible. Using this structure, we define stable Adams operations on Hermitian $K$-the
In previous work of the first author and Jibladze, the $E_3$-term of the Adams spectral sequence was described as a secondary derived functor, defined via secondary chain complexes in a groupoid-enriched category. This led to computations of the $E_3
A p-local compact group is an algebraic object modelled on the p-local homotopy theory of classifying spaces of compact Lie groups and p-compact groups. In the study of these objects unstable Adams operations, are of fundamental importance. In this p