ترغب بنشر مسار تعليمي؟ اضغط هنا

Metallicity and distance of NGC 6362 from its RR Lyrae and SX Phoenicis stars

90   0   0.0 ( 0 )
 نشر من قبل Armando Arellano Ferro
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

New time-series VI CCD photometry of the globular cluster NGC 6362 is studied with the aim of estimating the reddening, mean metallicity and distance of the cluster from its population of RR Lyrae stars. The Fourier decomposition of carefully selected single-mode RR Lyrae light curves, and the use of well-established semi-empirical calibrations and revised zero points, lead to the values of [Fe/H]UVES =1:066 +// 0:126 and -1:08 +/- 0:16 and the distance 7:93 +/- 0:32 and 8:02 +/- 0:15 kpc from the RRab and RRc stars respectively. The distribution of RR Lyrae stars in the horizontal branch shows a neat segregation of pulsating modes about the red edge of the first overtone instability strip, which is not necessarily expected in an OoI type cluster like NGC 6362. Four RRab stars are found likely advanced in their evolution towards the AGB. One new foreground SX Phe star, some 4 kpc in front of the cluster and projected onto the field of our images is reported. We comment on the heavy light contamination, by a very close neighbouring star, of the peculiar double-mode V37 variable, recently postulated as a non-typical RRc variable.

قيم البحث

اقرأ أيضاً

We use the pulsational properties of the RR Lyrae variables in the globular cluster NGC 1851 to obtain detailed constraints of the various sub-stellar populations present along its horizontal branch. On the basis of detailed synthetic horizontal bran ch modeling, we find that minor helium variations (Y~0.248-0.280) are able to reproduce the observed periods and amplitudes of the RR Lyrae variables, as well as the frequency of fundamental and first-overtone RR Lyrae stars. Comparison of number ratios amongst the blue and red horizontal branch components and the two observed subgiant branches also suggest that the RR Lyrae variables originated from the progeny of the bright subgiant branch. The RR Lyrae variables with a slightly enhanced helium (Y~0.270-0.280) have longer periods at a given amplitude, as is seen with Oosterhoff II (OoII) RR Lyrae variables, whereas the RR Lyrae variables with Y~0.248-0.270 have shorter periods, exhibiting properties of Oosterhoff I (OoI) variables. This correlation does suggest that the pulsational properties of RR Lyrae stars can be very useful for tracing the various sub-populations and can provide suitable constraints on the multiple population phenomenon. It appears of great interest to explore whether this conclusion can be generalized to other globular clusters hosting multiple populations.
We present newly-calibrated period-$phi_{31}$-[Fe/H] relations for fundamental mode RR Lyrae stars in the optical and, for the first time, mid-infrared. This works calibration dataset provides the largest and most comprehensive span of parameter spac e to date with homogeneous metallicities from $-3<textrm{[Fe/H]}<0.4$ and accurate Fourier parameters derived from 1980 ASAS-SN ($V$-band) and 1083 WISE (NEOWISE extension, $W1$ and $W2$ bands) RR Lyrae stars with well-sampled light curves. We compare our optical period-$phi_{31}$-[Fe/H] with those available in the literature and demonstrate that our relation minimizes systematic trends in the lower and higher metallicity range. Moreover, a direct comparison shows that our optical photometric metallicities are consistent with both those from high-resolution spectroscopy and globular clusters, supporting the good performance of our relation. We found an intrinsic scatter in the photometric metallicities (0.41 dex in the $V$-band and 0.50 dex in the infrared) by utilizing large calibration datasets covering a broad metallicity range. This scatter becomes smaller when optical and infrared bands are used together (0.37 dex). Overall, the relations derived in this work have many potential applications, including large-area photometric surveys with JWST in the infrared and LSST in the optical.
RR Lyrae stars for a long time had the reputation of being rather simple pulsators, but the advent of high-precision space photometry has meanwhile changed this picture dramatically. This article summarizes the results obtained for two remarkable Bla zhko RR Lyrae stars and discusses how our view of RR Lyrae stars has changed since the availability of ultra-precise satellite photometry as it is obtained by CoRoT and Kepler. Both stars, CoRoT 105288363 and V445 Lyrae, show a multitude of phenomena that were impossible to observe from the ground, either because of the small amplitude of the effect, or because uninterrupted long-term monitoring was required for a detection. Not only was it found that strong and irregular cycle-to-cycle changes of the Blazhko effect can occur, and that seemingly chaotic phenomena need to be accounted for when modeling the Blazhko effect, but also a rich spectrum of low-amplitude frequencies was detected in addition to the fundamental radial pusation in RRab stars. The so-called period doubling phenomenon, higher radial overtones and possibly also non-radial modes make RR Lyrae stars more multifaceted than previously thought. This article presents the various aspects of irregularity of the Blazhko effect, questioning its long-standing definition as a periodic modulation, and also discusses the low-amplitude pulsation signatures that had been hidden in the noise of observations for centuries.
In an era of extensive photometric observations, the catalogs of RR Lyr type variable stars number tens of thousands of objects. The relation between the iron abundance [Fe/H] and the Fourier parameters of the stars light curve allows us to investiga te mean metallicities and metallicity gradients in various stellar environments, independently of time-consuming spectroscopic observations. In this paper we use almost 6500 $V$- and $I$-band light curves of fundamental mode RR Lyr stars from the OGLE-IV survey to provide a relation between the $V$- and $I$-band phase parameter $varphi_{31}$ used to estimate [Fe/H]. The relation depends on metallicity, which limits its applicability. We apply this relation to metallicity formulae developed for the Johnson $V$- and the Kepler $Kp$-band to obtain the relation between [Fe/H] and $varphi_{31}$ for the $I$-band photometry. Last, we apply the new relation of Nemec to the OGLE-IV fundamental mode RR Lyr stars data and construct a metallicity map of the Magellanic Clouds. Median [Fe/H] is $-1.39pm0.44$ dex for the LMC and $-1.77pm0.48$ dex for the SMC, on the Jurcsik metallicity scale. We also find a metallicity gradient within the LMC with a slope of $-0.029pm0.002$ dex/kpc in the inner 5 kpc and $-0.030 pm0.003$ dex/kpc beyond 8 kpc, and no gradient in-between ($-0.019pm0.002$ dex/kpc integrally). We do not observe a metallicity gradient in the SMC, although we show that the metal-rich RRab stars are more concentrated toward the SMC center than the metal-poor.
We present a detailed spectroscopic analysis of horizontal branch stars in the globular cluster NGC 3201. We collected optical (4580-5330 A), high resolution (~34,000), high signal-to-noise ratio (~200) spectra for eleven RR Lyrae stars and one red h orizontal branch star with the multifiber spectrograph M2FS at the 6.5m Magellan telescope at the Las Campanas Observatory. From measured equivalent widths we derived atmospheric parameters and abundance ratios for {alpha} (Mg, Ca, Ti), iron peak (Sc, Cr, Ni, Zn) and s-process (Y) elements. We found that NGC 3201 is a homogeneous, mono-metallic ([Fe/H]=-1.47 +- 0.04), {alpha}-enhanced ([{alpha}/Fe]=0.37 +- 0.04) cluster. The relative abundances of the iron peak and s-process elements were found to be consistent with solar values. In comparison with other large stellar samples, NGC 3201 RR Lyraes have similar chemical enrichment histories as do those of other old (t>10 Gyr) Halo components (globular clusters, red giants, blue and red horizontal branch stars, RR Lyraes). We also provided a new average radial velocity estimate for NGC 3201 by using a template velocity curve to overcome the limit of single epoch measurements of variable stars: Vrad=494 +- 2 km s-1({sigma}=8 km s-1).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا