ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning to Look around Objects for Top-View Representations of Outdoor Scenes

91   0   0.0 ( 0 )
 نشر من قبل Samuel Schulter
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Given a single RGB image of a complex outdoor road scene in the perspective view, we address the novel problem of estimating an occlusion-reasoned semantic scene layout in the top-view. This challenging problem not only requires an accurate understanding of both the 3D geometry and the semantics of the visible scene, but also of occluded areas. We propose a convolutional neural network that learns to predict occluded portions of the scene layout by looking around foreground objects like cars or pedestrians. But instead of hallucinating RGB values, we show that directly predicting the semantics and depths in the occluded areas enables a better transformation into the top-view. We further show that this initial top-view representation can be significantly enhanced by learning priors and rules about typical road layouts from simulated or, if available, map data. Crucially, training our model does not require costly or subjective human annotations for occluded areas or the top-view, but rather uses readily available annotations for standard semantic segmentation. We extensively evaluate and analyze our approach on the KITTI and Cityscapes data sets.

قيم البحث

اقرأ أيضاً

In this paper, we address the problem of inferring the layout of complex road scenes given a single camera as input. To achieve that, we first propose a novel parameterized model of road layouts in a top-view representation, which is not only intuiti ve for human visualization but also provides an interpretable interface for higher-level decision making. Moreover, the design of our top-view scene model allows for efficient sampling and thus generation of large-scale simulated data, which we leverage to train a deep neural network to infer our scene models parameters. Specifically, our proposed training procedure uses supervised domain-adaptation techniques to incorporate both simulated as well as manually annotated data. Finally, we design a Conditional Random Field (CRF) that enforces coherent predictions for a single frame and encourages temporal smoothness among video frames. Experiments on two public data sets show that: (1) Our parametric top-view model is representative enough to describe complex road scenes; (2) The proposed method outperforms baselines trained on manually-annotated or simulated data only, thus getting the best of both; (3) Our CRF is able to generate temporally smoothed while semantically meaningful results.
The use of rendered images, whether from completely synthetic datasets or from 3D reconstructions, is increasingly prevalent in vision tasks. However, little attention has been given to how the selection of viewpoints affects the performance of rende red training sets. In this paper, we propose a data-driven approach to view set selection. Given a set of example images, we extract statistics describing their contents and generate a set of views matching the distribution of those statistics. Motivated by semantic segmentation tasks, we model the spatial distribution of each semantic object category within an image view volume. We provide a search algorithm that generates a sampling of likely candidate views according to the example distribution, and a set selection algorithm that chooses a subset of the candidates that jointly cover the example distribution. Results of experiments with these algorithms on SUNCG indicate that they are indeed able to produce view distributions similar to an example set from NYUDv2 according to the earth movers distance. Furthermore, the selected views improve performance on semantic segmentation compared to alternative view selection algorithms.
While visual object detection with deep learning has received much attention in the past decade, cases when heavy intra-class occlusions occur have not been studied thoroughly. In this work, we propose a Non-Maximum-Suppression (NMS) algorithm that d ramatically improves the detection recall while maintaining high precision in scenes with heavy occlusions. Our NMS algorithm is derived from a novel embedding mechanism, in which the semantic and geometric features of the detected boxes are jointly exploited. The embedding makes it possible to determine whether two heavily-overlapping boxes belong to the same object in the physical world. Our approach is particularly useful for car detection and pedestrian detection in urban scenes where occlusions often happen. We show the effectiveness of our approach by creating a model called SG-Det (short for Semantics and Geometry Detection) and testing SG-Det on two widely-adopted datasets, KITTI and CityPersons for which it achieves state-of-the-art performance.
Convolutional Neural Networks (CNNs) have proved exceptional at learning representations for visual object categorization. However, CNNs do not explicitly encode objects, parts, and their physical properties, which has limited CNNs success on tasks t hat require structured understanding of visual scenes. To overcome these limitations, we introduce the idea of Physical Scene Graphs (PSGs), which represent scenes as hierarchical graphs, with nodes in the hierarchy corresponding intuitively to object parts at different scales, and edges to physical connections between parts. Bound to each node is a vector of latent attributes that intuitively represent object properties such as surface shape and texture. We also describe PSGNet, a network architecture that learns to extract PSGs by reconstructing scenes through a PSG-structured bottleneck. PSGNet augments standard CNNs by including: recurrent feedback connections to combine low and high-level image information; graph pooling and vectorization operations that convert spatially-uniform feature maps into object-centric graph structures; and perceptual grouping principles to encourage the identification of meaningful scene elements. We show that PSGNet outperforms alternative self-supervised scene representation algorithms at scene segmentation tasks, especially on complex real-world images, and generalizes well to unseen object types and scene arrangements. PSGNet is also able learn from physical motion, enhancing scene estimates even for static images. We present a series of ablation studies illustrating the importance of each component of the PSGNet architecture, analyses showing that learned latent attributes capture intuitive scene properties, and illustrate the use of PSGs for compositional scene inference.
363 - Jiaxin Lu , Mai Xu , Ren Yang 2018
Memorability measures how easily an image is to be memorized after glancing, which may contribute to designing magazine covers, tourism publicity materials, and so forth. Recent works have shed light on the visual features that make generic images, o bject images or face photographs memorable. However, these methods are not able to effectively predict the memorability of outdoor natural scene images. To overcome this shortcoming of previous works, in this paper, we provide an attempt to answer: what exactly makes outdoor natural scenes memorable. To this end, we first establish a large-scale outdoor natural scene image memorability (LNSIM) database, containing 2,632 outdoor natural scene images with their ground truth memorability scores and the multi-label scene category annotations. Then, similar to previous works, we mine our database to investigate how low-, middle- and high-level handcrafted features affect the memorability of outdoor natural scenes. In particular, we find that the high-level feature of scene category is rather correlated with outdoor natural scene memorability, and the deep features learnt by deep neural network (DNN) are also effective in predicting the memorability scores. Moreover, combining the deep features with the category feature can further boost the performance of memorability prediction. Therefore, we propose an end-to-end DNN based outdoor natural scene memorability (DeepNSM) predictor, which takes advantage of the learned category-related features. Then, the experimental results validate the effectiveness of our DeepNSM model, exceeding the state-of-the-art methods. Finally, we try to understand the reason of the good performance for our DeepNSM model, and also study the cases that our DeepNSM model succeeds or fails to accurately predict the memorability of outdoor natural scenes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا