ترغب بنشر مسار تعليمي؟ اضغط هنا

Faraday-shielded, DC Stark-free optical lattice clock

77   0   0.0 ( 0 )
 نشر من قبل Kyle Beloy
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate the absence of a DC Stark shift in an ytterbium optical lattice clock. Stray electric fields are suppressed through the introduction of an in-vacuum Faraday shield. Still, the effectiveness of the shielding must be experimentally assessed. Such diagnostics are accomplished by applying high voltage to six electrodes, which are grounded in normal operation to form part of the Faraday shield. Our measurements place a constraint on the DC Stark shift at the $10^{-20}$ level, in units of the clock frequency. Moreover, we discuss a potential source of error in strategies to precisely measure or cancel non-zero DC Stark shifts, attributed to field gradients coupled with the finite spatial extent of the lattice-trapped atoms. With this consideration, we find that Faraday shielding, complemented with experimental validation, provides both a practically appealing and effective solution to the problem of DC Stark shifts in optical lattice clocks.

قيم البحث

اقرأ أيضاً

We study ultracold collisions in fermionic ytterbium by precisely measuring the energy shifts they impart on the atoms internal clock states. Exploiting Fermi statistics, we uncover p-wave collisions, in both weakly and strongly interacting regimes. With the higher density afforded by two-dimensional lattice confinement, we demonstrate that strong interactions can lead to a novel suppression of this collision shift. In addition to reducing the systematic errors of lattice clocks, this work has application to quantum information and quantum simulation with alkaline-earth atoms.
Optical clocks benefit from tight atomic confinement enabling extended interrogation times as well as Doppler- and recoil-free operation. However, these benefits come at the cost of frequency shifts that, if not properly controlled, may degrade clock accuracy. Numerous theoretical studies have predicted optical lattice clock frequency shifts that scale nonlinearly with trap depth. To experimentally observe and constrain these shifts in an $^{171}$Yb optical lattice clock, we construct a lattice enhancement cavity that exaggerates the light shifts. We observe an atomic temperature that is proportional to the optical trap depth, fundamentally altering the scaling of trap-induced light shifts and simplifying their parametrization. We identify an operational magic wavelength where frequency shifts are insensitive to changes in trap depth. These measurements and scaling analysis constitute an essential systematic characterization for clock operation at the $10^{-18}$ level and beyond.
With the uncertainty of the optical clocks improving to the order of 10-18, the probe light used to detect the clock transition has demonstrated nonnegligible Stark shift, provoking to precisely evaluate this shift. Here, we demonstrate a frequency m odulation technique to realize a large measurement lever arm of the probe Stark shift with no cost of the measurement accuracy of the interleaved stabilization method. This frequency-modulated spectrum is theoretical described and experimental verified. The probe Stark shift coefficient of the 87Sr optical lattice clock is experimentally determined as -(45.97+/-3.51) Hz/(W/cm2) using this frequency modulation spectroscopy.
We report on an improved systematic evaluation of the JILA SrI optical lattice clock, achieving a nearly identical systematic uncertainty compared to the previous strontium accuracy record set by the JILA SrII optical lattice clock (OLC) at $2.1 time s 10^{-18}$. This improves upon the previous evaluation of the JILA SrI optical lattice clock in 2013, and we achieve a more than twenty-fold reduction in systematic uncertainty to $2.0 times 10^{-18}$. A seven-fold improvement in clock stability, reaching $4.8 times 10^{-17}/sqrt{tau}$ for an averaging time $tau$ in seconds, allows the clock to average to its systematic uncertainty in under 10 minutes. We improve the systematic uncertainty budget in several important ways. This includes a novel scheme for taming blackbody radiation-induced frequency shifts through active stabilization and characterization of the thermal environment, inclusion of higher-order terms in the lattice light shift, and updated atomic coefficients. Along with careful control of other systematic effects, we achieve low temporal drift of systematic offsets and high uptime of the clock. We additionally present an improved evaluation of the second order Zeeman coefficient that is applicable to all Sr optical lattice clocks. These improvements in performance have enabled several important studies including frequency ratio measurements through the Boulder Area Clock Optical Network (BACON), a high precision comparison with the JILA 3D lattice clock, a demonstration of a new all-optical time scale combining SrI and a cryogenic silicon cavity, and a high sensitivity search for ultralight scalar dark matter.
The Stark shift due to blackbody radiation (BBR) is the key factor limiting the performance of many atomic frequency standards, with the BBR environment inside the clock apparatus being difficult to characterize at a high level of precision. Here we demonstrate an in-vacuum radiation shield that furnishes a uniform, well-characterized BBR environment for the atoms in an ytterbium optical lattice clock. Operated at room temperature, this shield enables specification of the BBR environment to a corresponding fractional clock uncertainty contribution of $5.5 times 10^{-19}$. Combined with uncertainty in the atomic response, the total uncertainty of the BBR Stark shift is now $1times10^{-18}$. Further operation of the shield at elevated temperatures enables a direct measure of the BBR shift temperature dependence and demonstrates consistency between our evaluated BBR environment and the expected atomic response.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا