ترغب بنشر مسار تعليمي؟ اضغط هنا

The imprints of AGN feedback within a supermassive black holes sphere of influence

354   0   0.0 ( 0 )
 نشر من قبل Helen Russell
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a new 300 ks Chandra observation of M87 that limits pileup to only a few per cent of photon events and maps the hot gas properties closer to the nucleus than has previously been possible. Within the supermassive black holes gravitational sphere of influence, the hot gas is multiphase and spans temperatures from 0.2 to 1 keV. The radiative cooling time of the lowest temperature gas drops to only 0.1-0.5 Myr, which is comparable to its free fall time. Whilst the temperature structure is remarkably symmetric about the nucleus, the density gradient is steep in sectors to the N and S, with $rho{propto}r^{-1.5pm0.1}$, and significantly shallower along the jet axis to the E, where $rho{propto}r^{-0.93pm0.07}$. The density structure within the Bondi radius is therefore consistent with steady inflows perpendicular to the jet axis and an outflow directed E along the jet axis. By putting limits on the radial flow speed, we rule out Bondi accretion on the scale resolved at the Bondi radius. We show that deprojected spectra extracted within the Bondi radius can be equivalently fit with only a single cooling flow model, where gas cools from 1.5 keV down below 0.1 keV at a rate of 0.03 M$_{odot}$/yr. For the alternative multi-temperature spectral fits, the emission measures for each temperature component are also consistent with a cooling flow model. The lowest temperature and most rapidly cooling gas in M87 is therefore located at the smallest radii at ~100 pc and may form a mini cooling flow. If this cooling gas has some angular momentum, it will feed into the cold gas disk around the nucleus, which has a radius of ~80 pc and therefore lies just inside the observed transition in the hot gas structure.

قيم البحث

اقرأ أيضاً

An extraordinary recent development in astrophysics was the discovery of the fossil relationship between central black hole mass and the stellar mass of galactic bulges. The physical process underpinning this relationship has become known as feedback . The Chandra X-ray Observatory was instrumental in realizing the physical basis for feedback, by demonstrating a tight coupling between the energy released by supermassive black holes and the gaseous structures surrounding them. This white paper discusses how a great leap forward in X-ray collecting area and spectral resolution will allow a qualitatively new way of studying how feedback from black holes influenced the growth of structure.
120 - N. Rea , P. Esposito , J. A. Pons 2013
The center of our Galaxy hosts a supermassive black hole, Sagittarius (Sgr) A*. Young, massive stars within 0.5 pc of SgrA* are evidence of an episode of intense star formation near the black hole a few Myr ago, which might have left behind a young n eutron star traveling deep into SgrA*s gravitational potential. On 2013 April 25, a short X-ray burst was observed from the direction of the Galactic center. Thanks to a series of observations with the Chandra and the Swift satellites, we pinpoint the associated magnetar at an angular distance of 2.4+/-0.3 arcsec from SgrA*, and refine the source spin period and its derivative (P=3.7635537(2) s and dot{P} = 6.61(4)x10^{-12} s/s), confirmed by quasi simultaneous radio observations performed with the Green Bank (GBT) and Parkes antennas, which also constrain a Dispersion Measure of DM=1750+/-50 pc cm^{-3}, the highest ever observed for a radio pulsar. We have found that this X-ray source is a young magnetar at ~0.07-2 pc from SgrA*. Simulations of its possible motion around SgrA* show that it is likely (~90% probability) in a bound orbit around the black hole. The radiation front produced by the past activity from the magnetar passing through the molecular clouds surrounding the Galactic center region, might be responsible for a large fraction of the light echoes observed in the Fe fluorescence features.
It is well established that the properties of supermassive black holes and their host galaxies are correlated through scaling relations. While hydrodynamical cosmological simulations have begun to account for the co-evolution of BHs and galaxies, the y typically have neglected the BH spin, even though it may play an important role in modulating the growth and feedback of BHs. Here we introduce a new sub-grid model for the BH spin evolution in the moving-mesh code {small AREPO} in order to improve the physical faithfulness of the BH modelling in galaxy formation simulations. We account for several different channels of spin evolution, in particular gas accretion through a Shakura-Sunyaev $alpha$-disc, chaotic accretion, and BH mergers. For BH feedback, we extend the IllustrisTNG model, which considers two different BH feedback modes, a thermal quasar mode for high accretion states and a kinetic mode for low Eddington ratios, with a self-consistent accounting of spin-dependent radiative efficiencies and thus feedback strength. We find that BHs with mass $M_{rm{bh}}lesssim 10^{8}, {rm M}_odot$ reach high spin values as they typically evolve in the coherent gas accretion regime. On the other hand, BHs with mass $M_{rm{bh}}gtrsim 10^{8}, {rm M}_odot$ have lower spins as BH mergers become more frequent, and their accretion discs fragment due to self-gravity, inducing chaotic accretion. We also explore the hypothesis that the transition between the quasar and kinetic feedback modes is mediated by the accretion mode of the BH disc itself, i.e.~the kinetic feedback mode is activated when the disc enters the self-gravity regime. We find excellent agreement between the galaxy and BH populations for this approach and the fiducial TNG model with no spin evolution. Furthermore, our new approach alleviates a tension in the galaxy morphology -- colour relation of the original TNG model.
In many galactic nuclei, a nuclear stellar cluster (NSC) co-exists with a supermassive black hole (SMBH). In this work, we explore the idea that the NSC forms before the SMBH through the merger of several stellar clusters that may contain intermediat e-mass black holes (IMBHs). These IMBHs can subsequently grow by mergers and accretion to form an SMBH. To check the observable consequences of this proposed SMBH seeding mechanism, we created an observationally motivated mock population of galaxies, in which NSCs are constructed by aggregating stellar clusters that may or may not contain IMBHs. We model the growth of IMBHs in the NSCs through gravitational wave (GW) mergers with other IMBHs and gas accretion. In the case of GW mergers, the merged BH can either be retained or ejected depending on the GW recoil kick it receives. The likelihood of retaining the merged BH increases if we consider growth of IMBHs in the NSC through gas accretion. We find that nucleated lower-mass galaxies ($rm M_{star} lesssim 10^{9} M_{odot}$; e.g. M33) have an SMBH seed occupation fraction of about 0.3 to 0.5. This occupation fraction increases with galaxy stellar mass and for more massive galaxies ($rm 10^{9} M_{odot} lesssim rm M_{star} lesssim 10^{11} M_{odot}$), it is between 0.5 and 0.8, depending on how BH growth is modelled. These occupation fractions are consistent with observational constraints. Furthermore, allowing for BH growth also allows us to reproduce the observed diversity in the mass range of SMBHs in the $rm M_{rm NSC} - M_{rm BH}$ plane.
146 - Y.-M. Chen 2009
Tracing the star formation history in circumnuclear regions (CNRs) is a key step towards understanding the starburst-AGN connection. However, bright nuclei outshining the entire host galaxy prevent the analysis of the stellar populations of CNRs arou nd type-I AGNs. Obscuration of the nuclei by the central torus provides an unique opportunity to study the stellar populations of AGN host galaxies. We assemble a sample of 10, 848 type-II AGNs with a redshift range of $0.03le zle 0.08$ from the Sloan Digital Sky Surveys Data Release 4, and measure the mean specific star formation rates (SSFRs) over the past 100Myr in the central $sim1-2$ kpc . We find a tight correlation between the Eddington ratio ($lambda$) of the central black hole (BH) and the mean SSFR, strongly implying that supernova explosions (SNexp) play a role in the transportation of gas to galactic centers. We outline a model for this connection by accounting for the role of SNexp in the dynamics of CNRs. In our model, the viscosity of turbulence excited by SNexp is enhanced, and thus angular momentum can be efficiently transported, driving inflows towards galactic centers. Our model explains the observed relation $lambda propto rm SSFR^{1.5-2.0}$, suggesting that AGN are triggered by SNexp in CNRs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا