ﻻ يوجد ملخص باللغة العربية
The center of our Galaxy hosts a supermassive black hole, Sagittarius (Sgr) A*. Young, massive stars within 0.5 pc of SgrA* are evidence of an episode of intense star formation near the black hole a few Myr ago, which might have left behind a young neutron star traveling deep into SgrA*s gravitational potential. On 2013 April 25, a short X-ray burst was observed from the direction of the Galactic center. Thanks to a series of observations with the Chandra and the Swift satellites, we pinpoint the associated magnetar at an angular distance of 2.4+/-0.3 arcsec from SgrA*, and refine the source spin period and its derivative (P=3.7635537(2) s and dot{P} = 6.61(4)x10^{-12} s/s), confirmed by quasi simultaneous radio observations performed with the Green Bank (GBT) and Parkes antennas, which also constrain a Dispersion Measure of DM=1750+/-50 pc cm^{-3}, the highest ever observed for a radio pulsar. We have found that this X-ray source is a young magnetar at ~0.07-2 pc from SgrA*. Simulations of its possible motion around SgrA* show that it is likely (~90% probability) in a bound orbit around the black hole. The radiation front produced by the past activity from the magnetar passing through the molecular clouds surrounding the Galactic center region, might be responsible for a large fraction of the light echoes observed in the Fe fluorescence features.
Supermassive black hole binaries (SMBHBs) should form frequently in galactic nuclei as a result of galaxy mergers. At sub-parsec separations, binaries become strong sources of low-frequency gravitational waves (GWs), targeted by Pulsar Timing Arrays
We present a new 300 ks Chandra observation of M87 that limits pileup to only a few per cent of photon events and maps the hot gas properties closer to the nucleus than has previously been possible. Within the supermassive black holes gravitational s
Pulsar timing arrays (PTAs) are expected to detect gravitational waves (GWs) from individual low-redshift (z<1.5) compact supermassive (M>10^9 Msun) black hole (SMBH) binaries with orbital periods of approx. 0.1 - 10 yrs. Identifying the electromagne
We consider black hole - galaxy coevolution using simple analytic arguments. We focus on the fact that several supermassive black holes are known with masses significantly larger than suggested by the $M - {sigma}$ relation, sometimes also with rathe
The compact and, with 4.3+-0.3 million solar masses, very massive object located at the center of the Milky Way is currently the very best candidate for a supermassive black hole (SMBH) in our immediate vicinity. The strongest evidence for this is pr