ترغب بنشر مسار تعليمي؟ اضغط هنا

V2676 Oph: Estimating physical parameters of a moderately fast nova

72   0   0.0 ( 0 )
 نشر من قبل Ashish Raj
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using our previously reported observations, we derive some physical parameters of the moderately fast nova V2676 Ophiuchi 2012 # 1. The best-fit CLOUDY model of the nebular spectrum obtained on 2015 May 8 shows a hot white dwarf source with Tbb = 1.0 x 10^{5} K having a luminosity of 1.0 x 10^{38} ergs/s. Our abundance analysis shows that the ejecta are significantly enhanced relative to solar, He/H = 2.14, O/H = 2.37, S/H = 6.62 and Ar/H = 3.25. The ejecta mass is estimated to be 1.42 x 10^{-5} Msun. The nova showed a pronounced dust formation phase after 90 days from discovery. The J-H and H-K colors were very large as compared to other molecule- and dust-forming novae in recent years. The dust temperature and mass at two epochs have been estimated from spectral energy distribution (SED) fits to infrared photometry.

قيم البحث

اقرأ أيضاً

The dust-forming nova V2676 Oph is unique in that it was the first nova to provide evidence of C_2 and CN molecules during its near-maximum phase and evidence of CO molecules during its early decline phase. Observations of this nova have revealed the slow evolution of its lightcurves and have also shown low isotopic ratios of carbon (12C/13C) and nitrogen (14N/15N) in its nova envelope. These behaviors indicate that the white dwarf (WD) star hosting V2676 Oph is a CO-rich WD rather than an ONe-rich WD (typically larger in mass than the former). We performed mid-infrared spectroscopic and photometric observations of V2676 Oph in 2013 and 2014 (respectively 452 and 782 days after its discovery). No significant [Ne II] emission at 12.8 micron was detected at either epoch. These provided evidence for a CO-rich WD star hosting V2676 Oph. Both carbon-rich and oxygen-rich grains were detected in addition to an unidentified infrared feature at 11.4 micron originating from polycyclic aromatic hydrocarbon molecules or hydrogenated amorphous carbon grains in the envelope of V2676 Oph.
V2672 Oph reached maximum brightness V=11.35 on 2009 August 16.5. With observed t2(V)=2.3 and t3(V)=4.2 days decline times, it is one of the fastest known novae, being rivalled only by V1500 Cyg (1975) and V838 Her (1991) among classical novae, and U Sco among the recurrent ones. The line of sight to the nova passes within a few degrees of the Galactic centre. The reddening of V2672 Oph is E(B-V)=1.6 +/-0.1, and its distance ~19 kpc places it on the other side of the Galactic centre at a galacto-centric distance larger than the solar one. The lack of an infrared counterpart for the progenitor excludes the donor star from being a cool giant like in RS Oph or T CrB. With close similarity to U Sco, V2672 Oph displayed a photometric plateau phase, a He/N spectrum classification, extreme expansion velocities and triple peaked emission line profiles during advanced decline. The full width at zero intensity of Halpha was 12,000 km/s at maximum, and declined linearly in time with a slope very similar to that observed in U Sco. We infer a WD mass close to the Chandrasekhar limit and a possible final fate as a SNIa. Morpho-kinematical modelling of the evolution of the Halpha profile suggests that the overall structure of the ejecta is that of a prolate system with polar blobs and an equatorial ring. The density in the prolate system appeared to decline faster than that in the other components. V2672 Oph is seen pole-on, with an inclination of 0+/-6 deg and an expansion velocity of the polar blobs of 4800 +900/-800 km/s. On the basis of its remarkable similarity to U Sco, we suspect this nova may be a recurrent. Given the southern declination, the faintness at maximum, the extremely rapid decline and its close proximity to the Ecliptic, it is quite possible that previous outbursts of V2672 Oph have been missed.
We present near-infrared and optical observations of moderately fast FeII-class Nova Scuti 2009 (V496 Sct) covering various phases; pre-maximum, early decline and nebular, during the first 10 months after its discovery followed by limited observation s up to 2011 April. In the initial phase the nova spectra show prominent P Cygni profiles and later all the lines are seen in emission. The notable feature of the near-IR spec- tra in the early decline phase is the rare presence of the first overtone bands of carbon monoxide (CO) in emission. The IR spectra show clear dust formation in the expand- ing ejecta at later phase about 150 days after the peak brightness. The presence of lines of elements with low ionization potentials like Na and Mg in the early IR spectra and the detection of CO bands in emission and the dust formation in V496 Sct represents a complete expected sequence in the dust formation in nova ejecta. The light curve shows a slow rise to the maximum and a slow decline indicating a prolonged mass loss. This is corroborated by the strengthening of P Cygni profiles during the first 30 days. The broad and single absorption components seen in many lines in the optical spectra at the time of discovery are replaced by two sharper components in the spectra taken close to the optical maximum brightness. These sharp dips seen in the P Cygni absorption components of Fe II and H I lines during the early decline phase show increasing outflow velocities. The onset of the nebular phase is evident from the optical spectra in 2010 March. During the nebular phase, several emission lines display saddle-like profiles. In the nebular stage, the observed fluxes of [O III] and H lines are used to estimate the electron number densities and the mass of the ejecta. The optical spectra show that the nova is evolved in the P_fe A_o spectral sequence.
We present low-resolution ($Rsim 90$) and medium-resolution ($Rsim 2500$) spectropolarimetry of Nova V475 Sct with the HBS instrument, mounted on the 0.91-m telescope at the Okayama Astrophysical Observatory, and with FOCAS, mounted on the 8.2-m Suba ru telescope. We estimated the interstellar polarization toward the nova from the steady continuum polarization components and H$alpha$ line emission components. After subtracting the interstellar polarization component from the observations, we found that the H$alpha$ emission seen on 2003 October 7 was clearly polarized. In the polarized flux spectrum, the H$alpha$ emission had a distinct red wing extending to $sim +4900$ km s$^{-1}$ and a shoulder around $+3500$ km s$^{-1}$, showing a constant position angle of linear polarization $theta_{rm *}simeq 155arcdegpm 15arcdeg$. This suggests that the nova had an asymmetric outflow with a velocity of $v_{rm wind}simeq 3500$ km s$^{-1}$ or more, which is six times higher than the expansion velocity of the ionized shell at the same epoch. Such a high-velocity component has not previously been reported for a nova in the `moderately fast speed class. Our observations suggest the occurrence of violent mass-loss activity in the nova binary system even during the common-envelope phase. The position angle of the polarization in the H$alpha$ wing is in good agreement with that of the continuum polarization found on 2003 September 26 ($p_{rm *}simeq 0.4$--0.6 %), which disappeared within the following 2 d. The uniformity of the PA between the continuum polarization and the wing polarization on October 7 suggests that the axis of the circumstellar asymmetry remained nearly constant during the period of our observations.
We present near-infrared spectroscopic and photometric observations of the nova KT Eridani taken during the first 100 days following its discovery in 2009 November. The JHK spectra of the object have been taken from the Mount Abu Infrared Observatory using the Near-Infrared Imager/Spectrometer. The spectra, typical of the He/N class novae, show strong He I emission lines together with H I and O I emission features. The H I, Pa-beta and Br-gamma spectral lines and the He I line at 2.0581 micron show broad wings with a relatively narrow central component. The broad wings extend to 1900 km/s while the central component has FWHM of 2100 km/s. The V and near-infrared JHK light curves show an additional small amplitude outburst near 40 days after optical maximum. The distance to the nova d = 6.3 +/- 0.1 kpc is derived using the MMRD relation and the estimated value of t2 = 5.7 +/- 0.3 days. The small value of t2 places KT Eri in the class of very fast novae. Using the value of the distance to the nova d, we estimate the height of the nova to be z = 3.3 +/- 0.1 kpc below the galactic plane. We have also calculated the upper limit for the ejecta mass for KT Eri to be in the range 2.4-7.4 x 10^(-5) Msun. Kinematic evidence is presented from the shape of the line profiles for a possible bipolar flow. We analyze the temporal evolution of the continuum and also discuss the possibility of KT Eri being a recurrent nova.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا