ﻻ يوجد ملخص باللغة العربية
We present near-infrared spectroscopic and photometric observations of the nova KT Eridani taken during the first 100 days following its discovery in 2009 November. The JHK spectra of the object have been taken from the Mount Abu Infrared Observatory using the Near-Infrared Imager/Spectrometer. The spectra, typical of the He/N class novae, show strong He I emission lines together with H I and O I emission features. The H I, Pa-beta and Br-gamma spectral lines and the He I line at 2.0581 micron show broad wings with a relatively narrow central component. The broad wings extend to 1900 km/s while the central component has FWHM of 2100 km/s. The V and near-infrared JHK light curves show an additional small amplitude outburst near 40 days after optical maximum. The distance to the nova d = 6.3 +/- 0.1 kpc is derived using the MMRD relation and the estimated value of t2 = 5.7 +/- 0.3 days. The small value of t2 places KT Eri in the class of very fast novae. Using the value of the distance to the nova d, we estimate the height of the nova to be z = 3.3 +/- 0.1 kpc below the galactic plane. We have also calculated the upper limit for the ejecta mass for KT Eri to be in the range 2.4-7.4 x 10^(-5) Msun. Kinematic evidence is presented from the shape of the line profiles for a possible bipolar flow. We analyze the temporal evolution of the continuum and also discuss the possibility of KT Eri being a recurrent nova.
Modelling the morphology of a nova outburst provides valuable information on the shaping mechanism in operation at early stages following the outburst. We performed morpho-kinematical studies, using {sc shape}, of the evolution of the Halpha line pro
V2672 Oph reached maximum brightness V=11.35 on 2009 August 16.5. With observed t2(V)=2.3 and t3(V)=4.2 days decline times, it is one of the fastest known novae, being rivalled only by V1500 Cyg (1975) and V838 Her (1991) among classical novae, and U
Fast novae are primarily located within the plane of the Galaxy, slow novae are found within its bulge. Because of high interstellar extinction along the line of sight many novae lying close to the plane are missed and only the brightest seen. One no
Near Infrared (NIR) and optical photometry and spectroscopy are presented for the nova V1831 Aquilae, covering the early decline and dust forming phases during the first $sim$90 days after its discovery. The nova is highly reddened due to interstella
We present multi-epoch near-infrared photo-spectroscopic observations of Nova Cephei 2014 and Nova Scorpii 2015, discovered in outburst on 2014 March 8.79 UT and 2015 February 11.84 UT respectively. Nova Cep 2014 shows the conventional NIR characteri