ﻻ يوجد ملخص باللغة العربية
Let $Omegasubsetmathbb{R}^N$, $Nge 2,$ be a bounded domain with an outward power-like peak which is assumed not too sharp in a suitable sense. We consider the Laplacian $umapsto -Delta u$ in $Omega$ with the Robin boundary condition $partial_n u=alpha u$ on $partialOmega$ with $partial_n$ being the outward normal derivative and $alpha>0$ being a parameter. We show that for large $alpha$ the associated eigenvalues $E_j(alpha)$ behave as $E_j(alpha)sim -epsilon_j alpha^ u$, where $ u>2$ and $epsilon_j>0$ depend on the dimension and the peak geometry. This is in contrast with the well-known estimate $E_j(alpha)=O(alpha^2)$ for the Lipschitz domains.
We study the eigenvalues of the Laplacian with a strong attractive Robin boundary condition in curvilinear polygons. It was known from previous works that the asymptotics of several first eigenvalues is essentially determined by the corner openings,
In this paper we deal with spectral optimization for the Robin Laplacian on a family of planar domains admitting parallel coordinates, namely a fixed-width strip built over a smooth closed curve and the exterior of a convex set with a smooth boundary
We study Schroedinger operators with Robin boundary conditions on exterior domains in $R^d$. We prove sharp point-wise estimates for the associated semi-groups which show, in particular, how the boundary conditions affect the time decay of the heat k
We study the long time behavior of small (in $l^2$) solutions of discrete nonlinear Schrodinger equations with potential. In particular, we are interested in the case that the corresponding discrete Schrodinger operator has exactly two eigenvalues. W
We discuss several geometric conditions guaranteeing the finiteness or the infiniteness of the discrete spectrum for Robin Laplacians on conical domains.