ترغب بنشر مسار تعليمي؟ اضغط هنا

Enhanced Thermoelectric Properties in a New Silicon Crystal Si24 with Intrinsic Nanoscale Porous Structure

118   0   0.0 ( 0 )
 نشر من قبل Kisung Chae
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Thermoelectric device is a promising next-generation energy solution owing to its capability to transform waste heat into useful electric energy, which can be realized in materials with high elec- tric conductivities and low thermal conductivities. A recently synthesized silicon allotrope of Si$_{24}$ features highly anisotropic crystal structure with nanometre-sized regular pores. Here, based on first-principles study without any empirical parameter, we show that the slightly doped Si$_{24}$ can pro- vide an order-of-magnitude enhanced thermoelectric figure of merit at room temperature, compared with the cubic diamond phase of silicon. We ascribe the enhancement to the intrinsic nanostructure formed by the nanopore array, which effectively hinders heat conduction while electric conductivity is maintained. This can be a viable option to enhance the thermoelectric figure of merit without further forming an extrinsic nanostructure. In addition, we propose a practical strategy to further diminish the thermal conductivity without affecting electric conductivity by confining rattling guest atoms in the pores.



قيم البحث

اقرأ أيضاً

357 - Lina Yang , Nuo Yang , 2014
The thermoelectric properties of n type nanoscale three dimensional (3D) Si phononic crystals (PnCs) with spherical pores are studied. Density functional theory and Boltzmann transport equation under the relaxation time approximation are applied to s tudy the electronic transport coefficients, electrical conductivity, Seebeck coefficient and electronic thermal conductivity. We found that the electronic transport coefficients in 3D Si PnC at room temperature (300 K) change very little compared with that of Si, for example, electrical conductivity and electronic thermal conductivity is decreased by 0.26 to 0.41 and 0.39 to 0.55 depending on carrier concentration, respectively, and the Seebeck coefficient is similar to that of bulk Si. However, the lattice thermal conductivity of 3D Si PnCs with spherical pores is decreased by a factor of 500 calculated by molecular dynamics methods, leading to the ZT of 0.76, which is about 30 times of that of porous Si. This work indicates that 3D Si PnC is a promising candidate for high efficiency thermoelectric materials.
Temperature dependent electrical resistivity, crystal structure and heat capacity measurements reveal a resistivity drop and metal to semiconductor transition corresponding to first order structural phase transition near 400 K in Ca3Co4O9. The lattic e parameter c varies smoothly with increasing temperature, while anomalies in the a, b1 and b2 lattice parameters occur at ~ 400 K. Both Ca2CoO3 and CoO2 layers become distorted above ~ 400 K associated with the metal to semiconductor transport behavior change. Resistivity and heat capacity measurements as a function of temperature under magnetic field indicates low spin contribution to this transition. Reduced resistivity associated with this first order phase transition from metallic to semiconducting behavior enhances the thermoelectric properties at high temperatures and points to the metal to semiconductor transition as a mechanism for improved ZT in high temperature thermoelectric oxides.
Isothermal Close Space Sublimation (ICSS) technique was used for embedding porous silicon (PS) films with ZnTe. It was studied the influence of the preparation conditions and in particular of a chemical etching step before the ZnTe growth, on the com position profile and final porosity of ZnTe embedded PS. The structure of the embedded material was determined by x-ray diffraction analysis while the thickness of the samples was determined by scanning electron microscopy (SEM). Rutherford backscattering (RBS) and Energy Dispersive (EDS) spectrometries allowed determining the composition profiles. We conclude that the etching of the PS surface before the ZnTe growth has two main effects: the increase of the porosity and enhancing the reactivity of the inner surface. It was observed that both effects benefit the filling process of the pores. Since RBS and EDS cannot detect the porosity in the present system, we explore the evolution of porosity by the fitting of the UV-VIS reflectance spectra. The atomic percent determined with this method was in relatively good agreement with that obtained from the RBS and EDS measurements.
We report an investigation of temperature- and doping-dependent thermoelectric behaviors of topological semimetal Cd3As2. The electrical conductivity, thermal conductivity, Seebeck coefficient, and figure of merit (ZT) are calculated by using Boltzma nn transport theory. The calculated thermoelectric properties of the pristine Cd3As2 match well the experimental results. The electron or hole doping, especially the latter, is found improving much the thermoelectric behaviors of the material. The optimum merit ZT of Cd3As2 with electron doping is found to be about 0.5 at T=700 K with n=1x1020 cm-3, much larger than the maximum experimental value obtained for the pristine Cd3As2 (~0.15). For the p-type Cd3As2, the maximal value of the Seebeck coefficient as a function of temperature increases apparently with the increase of the hole doping concentration and its position shifts drastically towards the lower temperature region compared to that of the n-type Cd3As2, leading to the optimum merit ZT of about 0.5 obtained at low temperature of 500K (p=1x1020 cm-3) in the p-type Cd3As2.
We examined the crystal structure of the new thermoelectric material LaOBiS2-xSex, whose thermoelectric performance is enhanced by Se substitution, by using powder synchrotron X-ray diffraction and Rietveld refinement. The emergence of metallic condu ctivity and enhancement of the thermoelectric power factor of LaOBiS2-xSex can be explained with the higher in-plane chemical pressure caused by the increase of Se concentration at the in-plane Ch1 site (Ch = S, Se). High-temperature X-ray diffraction measurements for optimally substituted LaOBiSSe revealed anomalously large atomic displacement parameters (Uiso) for Bi and Ch atoms in the BiCh2 conduction layers. The anisotropic analysis of the atomic displacement parameters (U11 and U33) for the in-plane Bi and Ch1 sites suggested that Bi atoms exhibit large atomic displacement along the c-axis direction above 300 K, which could be the origin of the low thermal conductivity in LaOBiSSe. The large Bi vibration along the c-axis direction could be related to in-plane rattling, which is a new strategy for attaining low thermal conductivity and phonon-glass-electron-crystal states.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا