ترغب بنشر مسار تعليمي؟ اضغط هنا

The nuclear symmetry energy and the breaking of the isospin symmetry: how do they reconcile with each other?

384   0   0.0 ( 0 )
 نشر من قبل Gianluca Col\\`o
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze and propose a solution to the apparent inconsistency between our current knowledge of the Equation of State of asymmetric nuclear matter, the energy of the Isobaric Analog State (IAS) in a heavy nucleus such as 208Pb, and the isospin symmetry breaking forces in the nuclear medium. This is achieved by performing state-of-the-art Hartree-Fock plus Random Phase Approximation calculations of the IAS that include all isospin symmetry breaking contributions. To this aim, we propose a new effective interaction that is successful in reproducing the IAS excitation energy without compromising other properties of finite nuclei.

قيم البحث

اقرأ أيضاً

In this work we present the first steps towards benchmarking isospin symmetry breaking in ab initio nuclear theory for calculations of superallowed Fermi $beta$-decay. Using the valence-space in-medium similarity renormalization group, we calculate b and c coefficients of the isobaric multiplet mass equation, starting from two different Hamiltonians constructed from chiral effective field theory. We compare results to experimental measurements for all T=1 isobaric analogue triplets of relevance to superallowed $beta$-decay for masses A=10 to A=74 and find an overall agreement within approximately 250 keV of experimental data for both b and c coefficients. A greater level of accuracy, however, is obtained by a phenomenological Skyrme interaction or a classical charged-sphere estimate. Finally, we show that evolution of the valence-space operator does not meaningfully improve the quality of the coefficients with respect to experimental data, which indicates that higher-order many-body effects are likely not responsible for the observed discrepancies.
The recent experimental observation of isospin symmetry breaking (ISB) in the ground states of the $T=3/2$ mirror pair $^{73}$Sr - $^{73}$Br is theoretically studied using large-scale shell model calculations. The large valence space and the successf ul PFSDG-U effective interaction used for the nuclear part of the problem capture possible structural changes and provide a robust basis to treat the ISB effects of both electromagnetic and non-electromagnetic origin. The calculated shifts and mirror-energy-differences are consistent with the inversion of the $I^{pi}$= 1/2$^{-}, 5/2^{-}$ states between $^{73}$Sr - $^{73}$Br, and suggest that the role played by the Coulomb interaction is dominant. An isospin breaking contribution of nuclear origin is estimated to be $approx 25$ keV.
The density dependence of the nuclear symmetry energy is inspected using the Statistical Multifragmentation Model with Skyrme effective interactions. The model consistently considers the expansion of the fragments volumes at finite temperature at the freeze-out stage. By selecting parameterizations of the Skyrme force that lead to very different equations of state for the symmetry energy, we investigate the sensitivity of different observables to the properties of the effective forces. Our results suggest that, in spite of being sensitive to the thermal dilation of the fragments volumes, it is difficult to distinguish among the Skyrme forces from the isoscaling analysis. On the other hand, the isotopic distribution of the emitted fragments turns out to be very sensitive to the force employed in the calculation.
The decomposition of nuclear symmetry energy into spin and isospin components is discussed to elucidate the underlying properties of the NN bare interaction. This investigation was carried out in the framework of the Brueckner-Hartree-Fock theory of asymmetric nuclear matter with consistent two and three body forces. It is shown the interplay among the various two body channels in terms of isospin singlet and triplet components as well as spin singlet and triplet ones. The broad range of baryon densities enables to study the effects of three body force moving from low to high densities.
We examine critically how tightly the density dependence of nuclear symmetry energy esym is constrained by the universal equation of state (EOS) of the unitary Fermi gas $E_{rm{UG}}(rho)$ considering currently known uncertainties of higher order para meters describing the density dependence of the Equation of State of isospin-asymmetric nuclear matter. We found that $E_{rm{UG}}(rho)$ does provide a useful lower boundary for the esym. However, it does not tightly constrain the correlation between the magnitude $E_{rm{sym}}(rho_0)$ and slope $L$ unless the curvature $K_{rm{sym}}$ of the symmetry energy at saturation density $rho_0$ is more precisely known. The large uncertainty in the skewness parameters affects the $E_{rm{sym}}(rho_0)$ versus $L$ correlation by the same almost as significantly as the uncertainty in $K_{rm{sym}}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا