ﻻ يوجد ملخص باللغة العربية
An important preprocessing step in most data analysis pipelines aims to extract a small set of sources that explain most of the data. Currently used algorithms for blind source separation (BSS), however, often fail to extract the desired sources and need extensive cross-validation. In contrast, their rarely used probabilistic counterparts can get away with little cross-validation and are more accurate and reliable but no simple and scalable implementations are available. Here we present a novel probabilistic BSS framework (DECOMPOSE) that can be flexibly adjusted to the data, is extensible and easy to use, adapts to individual sources and handles large-scale data through algorithmic efficiency. DECOMPOSE encompasses and generalises many traditional BSS algorithms such as PCA, ICA and NMF and we demonstrate substantial improvements in accuracy and robustness on artificial and real data.
The analytical solution of the three--dimensional linear pendulum in a rotating frame of reference is obtained, including Coriolis and centrifugal accelerations, and expressed in terms of initial conditions. This result offers the possibility of trea
One Monad to Prove Them All is a modern fairy tale about curiosity and perseverance, two important properties of a successful PhD student. We follow the PhD student Mona on her adventure of proving properties about Haskell programs in the proof assis
Speech-to-text alignment is a critical component of neural textto-speech (TTS) models. Autoregressive TTS models typically use an attention mechanism to learn these alignments on-line. However, these alignments tend to be brittle and often fail to ge
Canonical Correlation Analysis (CCA) and its regularis
Federated learning is an appealing framework for analyzing sensitive data from distributed health data networks. Under this framework, data partners at local sites collaboratively build an analytical model under the orchestration of a coordinating si