ﻻ يوجد ملخص باللغة العربية
We use a stochastic birth-death model for a population of cells to estimate the normal tissue complication probability (NTCP) under a particular radiotherapy protocol. We specifically allow for interaction between cells, via a nonlinear logistic growth model. To capture some of the effects of intrinsic noise in the population we develop several approximations of NTCP, using Kramers-Moyal expansion techniques. These approaches provide an approximation to the first and second moments of a general first-passage time problem in the limit of large, but finite populations. We use this method to study NTCP in a simple model of normal cells and in a model of normal and damaged cells. We also study a combined model of normal tissue cells and tumour cells. Based on existing methods to calculate tumour control probabilities, and our procedure to approximate NTCP, we estimate the probability of complication free tumour control.
It is well-established that including spatial structure and stochastic noise in models for predator-prey interactions invalidates the classical deterministic Lotka-Volterra picture of neutral population cycles. In contrast, stochastic models yield lo
With the current ongoing debate about fairness, explainability and transparency of machine learning models, their application in high-impact clinical decision-making systems must be scrutinized. We consider a real-life example of risk estimation befo
We use a stochastic Markovian dynamics approach to describe the spreading of vector-transmitted diseases, like dengue, and the threshold of the disease. The coexistence space is composed by two structures representing the human and mosquito populatio
Stochastic dynamics is generated by a matrix of transition probabilities. Certain eigenvectors of this matrix provide observables, and when these are plotted in the appropriate multi-dimensional space the phases (in the sense of phase transitions) of
Many socio-economic and biological processes can be modeled as systems of interacting individuals. The behaviour of such systems can be often described within game-theoretic models. In these lecture notes, we introduce fundamental concepts of evoluti