ﻻ يوجد ملخص باللغة العربية
The multivariate probit model (MVP) is a popular classic model for studying binary responses of multiple entities. Nevertheless, the computational challenge of learning the MVP model, given that its likelihood involves integrating over a multidimensional constrained space of latent variables, significantly limits its application in practice. We propose a flexible deep generalization of the classic MVP, the Deep Multivariate Probit Model (DMVP), which is an end-to-end learning scheme that uses an efficient parallel sampling process of the multivariate probit model to exploit GPU-boosted deep neural networks. We present both theoretical and empirical analysis of the convergence behavior of DMVPs sampling process with respect to the resolution of the correlation structure. We provide convergence guarantees for DMVP and our empirical analysis demonstrates the advantages of DMVPs sampling compared with standard MCMC-based methods. We also show that when applied to multi-entity modelling problems, which are natural DMVP applications, DMVP trains faster than classical MVP, by at least an order of magnitude, captures rich correlations among entities, and further improves the joint likelihood of entities compared with several competitive models.
Unsupervised contrastive learning has gained increasing attention in the latest research and has proven to be a powerful method for learning representations from unlabeled data. However, little theoretical analysis was known for this framework. In th
There is an increasing need to bring machine learning to a wide diversity of hardware devices. Current frameworks rely on vendor-specific operator libraries and optimize for a narrow range of server-class GPUs. Deploying workloads to new platforms --
Increasing demand for on-device Automatic Speech Recognition (ASR) systems has resulted in renewed interests in developing automatic model compression techniques. Past research have shown that AutoML-based Low Rank Factorization (LRF) technique, when
With the increasing popularity of machine learning techniques, it has become common to see prediction algorithms operating within some larger process. However, the criteria by which we train these algorithms often differ from the ultimate criteria on
We propose a novel end-to-end neural network architecture that, once trained, directly outputs a probabilistic clustering of a batch of input examples in one pass. It estimates a distribution over the number of clusters $k$, and for each $1 leq k leq