ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing black hole accretion in quasar pairs at high redshift

91   0   0.0 ( 0 )
 نشر من قبل Cristian Vignali
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف C. Vignali




اسأل ChatGPT حول البحث

Models and observations suggest that luminous quasar activity is triggered by mergers, so it should preferentially occur in the most massive primordial dark matter haloes, where the frequency of mergers is expected to be the highest. Since the importance of galaxy mergers increases with redshift, we identify the high-redshift Universe as the ideal laboratory for studying dual AGN. Here we present the X-ray properties of two systems of dual quasars at z=3.0-3.3 selected from the SDSS-DR6 at separations of 6-8 arcsec (43-65kpc) and observed by Chandra for 65ks each. Both members of each pair are detected with good photon statistics to allow us to constrain the column density, spectral slope and intrinsic X-ray luminosity. We also include a recently discovered dual quasar at z=5 (separation of 21 arcsec, 136kpc) for which XMM-Newton archival data allow us to detect the two components separately. Using optical spectra we derived bolometric luminosities, BH masses and Eddington ratios that were compared to those of luminous SDSS quasars in the same redshift ranges. We find that the brighter component of both pairs at z=3.0-3.3 has high luminosities compared to the distribution of SDSS quasars at similar redshift, with J1622A having an order magnitude higher luminosity than the median. This source lies at the luminous end of the z~3.3 quasar luminosity function. While we cannot conclusively state that the unusually high luminosities of our sources are related to their having a close companion, for J1622A there is only a 3% probability that it is by chance.

قيم البحث

اقرأ أيضاً

Short-lived intermittent phases of super-critical (super-Eddington) growth, coupled with star formation via positive feedback, may account for early growth of massive black holes (MBH) and coevolution with their host spheroids. We estimate the possib le growth rates and duty cycles of these episodes, both assuming slim accretion disk solutions, and adopting the results of recent numerical simulations. The angular momentum of gas joining the accretion disk determines the length of the accretion episodes, and the final mass a MBH can reach. The latter can be related to the gas velocity dispersion, and in galaxies with low-angular momentum gas the MBH can get to a higher mass. When the host galaxy is able to sustain inflow rates at 1-100 msunyr, replenishing and circulation lead to a sequence of short (~1e4-1e7 years), heavily obscured accretion episodes that increase the growth rates, with respect to an Eddington-limited case, by several orders of magnitude. Our model predicts that the ratio of MBH accretion rate to star formation rate is 1e2 or higher, leading, at early epochs, to a ratio of MBH to stellar mass higher than the canonical value of ~1e-3, in agreement with current observations. Our model makes specific predictions that long-lived super-critical accretion occurs only in galaxies with copious low-angular momentum gas, and in this case the MBH is more massive at fixed velocity dispersion.
The presence of massive black holes (BHs) with masses of order $10^9rm, M_odot$, powering bright quasars when the Universe was less than 1 Gyr old, poses strong constraints on their formation mechanism. Several scenarios have been proposed to date to explain massive BH formation, from the low-mass seed BH remnants of the first generation of stars to the massive seed BHs resulting from the rapid collapse of massive gas clouds. However, the plausibility of some of these scenarios to occur within the progenitors of high-z quasars has not yet been thoroughly explored. In this work, we investigate, by combining dark-matter only N-body simulations with a semi-analytic framework, whether the conditions for the formation of massive seed BHs from synchronised atomic-cooling halo pairs and/or dynamically-heated mini-haloes are fulfilled in the overdense regions where the progenitors of a typical high-redshift quasar host form and evolve. Our analysis shows that the peculiar conditions in such regions, i.e. strong halo clustering and high star formation rates, are crucial to produce a non-negligible number of massive seed BH host candidates: we find $approx1400$ dynamically heated metal-free mini-haloes, including one of these which evolves to a synchronised pair and ends up in the massive quasar-host halo by $z=6$. This demonstrates that the progenitors of high-redshift quasar host haloes can harbour early massive seed BHs. Our results further suggest that multiple massive seed BHs may form in or near the quasar hosts progenitors, potentially merging at lower redshifts and yielding gravitational wave events.
We exploit the 7 Ms textit{Chandra} observations in the chandra,Deep Field-South (mbox{CDF-S}), the deepest X-ray survey to date, coupled with CANDELS/GOODS-S data, to measure the total X-ray emission arising from 2076 galaxies at $3.5leq z < 6.5$. T his aim is achieved by stacking the textit{Chandra} data at the positions of optically selected galaxies, reaching effective exposure times of $geq10^9mathrm{s}$. We detect significant ($>3.7sigma$) X-ray emission from massive galaxies at $zapprox4$. We also report the detection of massive galaxies at $zapprox5$ at a $99.7%$ confidence level ($2.7sigma$), the highest significance ever obtained for X-ray emission from galaxies at such high redshifts. No significant signal is detected from galaxies at even higher redshifts. The stacking results place constraints on the BHAD associated with the known high-redshift galaxy samples, as well as on the SFRD at high redshift, assuming a range of prescriptions for X-ray emission due to X- ray binaries. We find that the X-ray emission from our sample is likely dominated by processes related to star formation. Our results show that low-rate mass accretion onto SMBHs in individually X-ray-undetected galaxies is negligible, compared with the BHAD measured for samples of X-ray detected AGN, for cosmic SMBH mass assembly at high redshift. We also place, for the first time, constraints on the faint-end of the AGN X-ray luminosity function ($mathrm{logL_Xsim42}$) at $z>4$, with evidence for fairly flat slopes. The implications of all of these findings are discussed in the context of the evolution of the AGN population at high redshift.
We present discovery observations of a quasar in the Canada-France High-z Quasar Survey (CFHQS) at redshift z=6.44. We also use near-IR spectroscopy of nine CFHQS quasars at z~6 to determine black hole masses. These are compared with similar estimate s for more luminous Sloan Digital Sky Survey (SDSS) quasars to investigate the relationship between black hole mass and quasar luminosity. We find a strong correlation between MgII FWHM and UV luminosity and that most quasars at this early epoch are accreting close to the Eddington limit. Thus these quasars appear to be in an early stage of their life cycle where they are building up their black hole mass exponentially. Combining these results with the quasar luminosity function, we derive the black hole mass function at z=6. Our black hole mass function is ~10^4 times lower than at z=0 and substantially below estimates from previous studies. The main uncertainties which could increase the black hole mass function are a larger population of obscured quasars at high-redshift than is observed at low-redshift and/or a low quasar duty cycle at z=6. In comparison, the global stellar mass function is only ~10^2 times lower at z=6 than at z=0. The difference between the black hole and stellar mass function evolution is due to either rapid early star formation which is not limited by radiation pressure as is the case for black hole growth or inefficient black hole seeding. Our work predicts that the black hole mass - stellar mass relation for a volume-limited sample of galaxies declines rapidly at very high redshift. This is in contrast to the observed increase at 4<z<6 from the local relation if one just studies the most massive black holes.
We search for high-redshift (z>4.5) X-ray AGNs in the deep central (off-axis angle <5.7) region of the 7 Ms Chandra Deep Field-South X-ray image. We compile an initial candidate sample from direct X-ray detections. We then probe more deeply in the X- ray data by using pre-selected samples with high spatial resolution NIR/MIR (HST 1.6 micron and Spitzer 4.5 micron) and submillimeter (ALMA 850 micron) observations. The combination of the NIR/MIR and submillimeter pre-selections allows us to find X-ray sources with a wide range of dust properties and spectral energy distributions (SEDs). We use the SEDs from the optical to the submillimeter to determine if previous photometric redshifts were plausible. Only five possible z>5 X-ray AGNs are found, all of which might also lie at lower redshifts. If they do lie at high redshifts, then two are Compton-thick AGNs, and three are ALMA 850 micron sources. We find that (i) the number density of X-ray AGNs is dropping rapidly at high redshifts, (ii) the detected AGNs do not contribute significantly to the photoionization at z>5, and (iii) the measured X-ray light density over z=5-10 implies a very low black hole accretion density with very little growth in the black hole mass density in this redshift range.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا