ﻻ يوجد ملخص باللغة العربية
In this paper, we show that every singular fiber of the Gelfand--Cetlin system on coadjoint orbits of unitary groups is a smooth isotropic submanifold which is diffeomorphic to a $2$-stage quotient of a compact Lie group by free actions of two other compact Lie groups. In many cases, these singular fibers can be shown to be homogeneous spaces or even diffeomorphic to compact Lie groups. We also give a combinatorial formula for computing the dimensions of all singular fibers, and give a detailed description of these singular fibers in many cases, including the so-called (multi-)diamond singularities. These (multi-)diamond singular fibers are degenerate for the Gelfand--Cetlin system, but they are Lagrangian submanifolds diffeomorphic to direct products of special unitary groups and tori. Our methods of study are based on different ideas involving complex ellipsoids, Lie groupoids, and also general ideas coming from the theory of singularities of integrable Hamiltonian systems.
We show that the Ginzburg-Weinstein diffeomorphism $mathfrak{u}(n)^* to U(n)^*$ of Alekseev-Meinrenken admits a scaling tropical limit on an open dense subset of $mathfrak{u}(n)^*$. The target of the limit map is a product $mathcal{C} times T$, where
We classify, up to symplectomorphisms, a neighborhood of a singular fiber of an integrable system (which is proper and has connected fibers) containing $k > 1$ focus-focus critical points. Our result shows that there is a one-to-one correspondence be
We determine the center of a localization of ${mathcal U}_q({mathfrak n}_omega)subseteq {mathcal U}^+_q({mathfrak g})$ by the covariant elements (non-mutable elements) by means of constructions and results from quantum cluster algebras. In our set-up
Actions of $U(n)$ on $U(n+1)$ coadjoint orbits via embeddings of $U(n)$ into $U(n+1)$ are an important family of examples of multiplicity free spaces. They are related to Gelfand-Zeitlin completely integrable systems and multiplicity free branching r
For the quantum algebra U_q(gl(n+1)) in its reduction on the subalgebra U_q(gl(n)) an explicit description of a Mickelsson-Zhelobenko reduction Z-algebra Z_q(gl(n+1),gl(n)) is given in terms of the generators and their defining relations. Using this