ترغب بنشر مسار تعليمي؟ اضغط هنا

q-Analog of Gelfand-Graev Basis for the Noncompact Quantum Algebra U_q(u(n,1))

120   0   0.0 ( 0 )
 نشر من قبل Valeriy Tolstoy
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

For the quantum algebra U_q(gl(n+1)) in its reduction on the subalgebra U_q(gl(n)) an explicit description of a Mickelsson-Zhelobenko reduction Z-algebra Z_q(gl(n+1),gl(n)) is given in terms of the generators and their defining relations. Using this Z-algebra we describe Hermitian irreducible representations of a discrete series for the noncompact quantum algebra U_q(u(n,1)) which is a real form of U_q(gl(n+1)), namely, an orthonormal Gelfand-Graev basis is constructed in an explicit form.



قيم البحث

اقرأ أيضاً

We introduce and define the quantum affine $(m|n)$-superspace (or say quantum Manin superspace) $A_q^{m|n}$ and its dual object, the quantum Grassmann superalgebra $Omega_q(m|n)$. Correspondingly, a quantum Weyl algebra $mathcal W_q(2(m|n))$ of $(m|n )$-type is introduced as the quantum differential operators (QDO for short) algebra $textrm{Diff}_q(Omega_q)$ defined over $Omega_q(m|n)$, which is a smash product of the quantum differential Hopf algebra $mathfrak D_q(m|n)$ (isomorphic to the bosonization of the quantum Manin superspace) and the quantum Grassmann superalgebra $Omega_q(m|n)$. An interested point of this approach here is that even though $mathcal W_q(2(m|n))$ itself is in general no longer a Hopf algebra, so are some interesting sub-quotients existed inside. This point of view gives us one of main expected results, that is, the quantum (restricted) Grassmann superalgebra $Omega_q$ is made into the $mathcal U_q(mathfrak g)$-module (super)algebra structure,$Omega_q=Omega_q(m|n)$ for $q$ generic, or $Omega_q(m|n, bold 1)$ for $q$ root of unity, and $mathfrak g=mathfrak{gl}(m|n)$ or $mathfrak {sl}(m|n)$, the general or special linear Lie superalgebra. This QDO approach provides us with explicit realization models for some simple $mathcal U_q(mathfrak g)$-modules, together with the concrete information on their dimensions. Similar results hold for the quantum dual Grassmann superalgebra $Omega_q^!$ as $mathcal U_q(mathfrak g)$-module algebra.In the paper some examples of pointed Hopf algebras can arise from the QDOs, whose idea is an expansion of the spirit noted by Manin in cite{Ma}, & cite{Ma1}.
We offer a complete classification of right coideal subalgebras which contain all group-like elements for the multiparameter version of the quantum group $U_q(mathfrak{sl}_{n+1})$ provided that the main parameter $q$ is not a root of 1. As a conseque nce, we determine that for each subgroup $Sigma $ of the group $G$ of all group-like elements the quantum Borel subalgebra $U_q^+ (mathfrak{sl}_{n+1})$ containes $(n+1)!$ different homogeneous right coideal subalgebras $U$ such that $Ucap G=Sigma .$ If $q$ has a finite multiplicative order $t>2,$ the classification remains valid for homogeneous right coideal subalgebras of the multiparameter version of the Lusztig quantum group $u_q (frak{sl}_{n+1}).$ In the paper we consider the quantifications of Kac-Moody algebras as character Hopf algebras [V.K. Kharchenko, A combinatorial approach to the quantifications of Lie algebras, Pacific J. Math., 203(1)(2002), 191- 233].
We show that the Kazhdan-Lusztig category $KL_k$ of level-$k$ finite-length modules with highest-weight composition factors for the affine Lie superalgebra $widehat{mathfrak{gl}(1|1)}$ has vertex algebraic braided tensor supercategory structure, and that its full subcategory $mathcal{O}_k^{fin}$ of objects with semisimple Cartan subalgebra actions is a tensor subcategory. We show that every simple $widehat{mathfrak{gl}(1|1)}$-module in $KL_k$ has a projective cover in $mathcal{O}_k^{fin}$, and we determine all fusion rules involving simple and projective objects in $mathcal{O}_k^{fin}$. Then using Knizhnik-Zamolodchikov equations, we prove that $KL_k$ and $mathcal{O}_k^{fin}$ are rigid. As an application of the tensor supercategory structure on $mathcal{O}_k^{fin}$, we study certain module categories for the affine Lie superalgebra $widehat{mathfrak{sl}(2|1)}$ at levels $1$ and $-frac{1}{2}$. In particular, we obtain a tensor category of $widehat{mathfrak{sl}(2|1)}$-modules at level $-frac{1}{2}$ that includes relaxed highest-weight modules and their images under spectral flow.
Motivated to simplify the structure of tensor representations we give a new set of generators for the Yangian $Y(sl(n))$ using the principal realization in simple Lie algebras. The isomorphism between our new basis and the standard Cartan-Weyl basis is also given. We show by example that the principal basis simplifies the Yangian action significantly in the tensor product of the fundamental representation and its dual.
106 - A.Kuniba , M.Okado , J.Suzuki 2001
We introduce a factorized difference operator L(u) annihilated by the Frenkel-Reshetikhin screening operator for the quantum affine algebra U_q(C^{(1)}_n). We identify the coefficients of L(u) with the fundamental q-characters, and establish a number of formulas for their higher analogues. They include Jacobi-Trudi and Weyl type formulas, canceling tableau sums, Casorati determinant solution to the T-system, and so forth. Analogous operators for the orthogonal series U_q(B^{(1)}_n) and U_q(D^{(1)}_n) are also presented.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا