ترغب بنشر مسار تعليمي؟ اضغط هنا

3D-Printed Phase Waveplates for THz Beam Shaping

525   0   0.0 ( 0 )
 نشر من قبل Jan Gospodaric
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The advancement of 3D-printing opens up a new way of constructing affordable custom terahertz (THz) components due to suitable printing resolution and THz transparency of polymer materials. We present a way of calculating, designing and fabricating a THz waveplate that phase-modulates an incident THz beam ({lambda}=2.14 mm) in order to create a predefined intensity profile of the optical wavefront on a distant image plane. Our calculations were performed for two distinct target intensities with the use of a modified Gerchberg-Saxton algorithm. The resulting phase-modulating profiles were used to model the polyactide elements, which were printed out with a commercially available 3D-printer. The results were tested in an THz experimental setup equipped with a scanning option and they showed good agreement with theoretical predictions.

قيم البحث

اقرأ أيضاً

We have investigated the use of inkjet printing technology for the production of THz range wire-grid polarizers using time-domain terahertz spectroscopy (TDTS). Such technology affords an inexpensive and reproducible way of quickly manufacturing THz range metamaterial structures. As a proof-of-concept demonstration, numerous thin silver-nanoparticle ink lines were printed using a Dimatix DMP-2831 printer. We investigated the optimal printing geometry of the polarizers by examining a number of samples with printed wires of varying thickness and spacing. We also investigated the polarization properties of multiply-stacked polarizers.
Multi-photon lithography has emerged as a powerful tool for photonic integration, allowing to complement planar photonic circuits by 3D-printed freeform structures such as waveguides or micro-optical elements. These structures can be fabricated with high precision on the facets of optical devices and lend themselves to highly efficient package-level chip-chip-connections in photonic assemblies. However, plain light transport and efficient coupling is far from exploiting the full geometrical design freedom that is offered by 3D laser lithography. Here, we extend the functionality of 3D-printed optical structures to manipulation of optical polarization states. We demonstrate compact ultra-broadband polarization beam splitters (PBS) that can be combined with polarization rotators (PR) and mode-field adapters into a monolithic 3D-printed structure, fabricated directly on the facets of optical devices. In a proof-of-concept experiment, we demonstrate measured polarization extinction ratios beyond 11 dB over a bandwidth of 350 nm at near-infrared (NIR) telecommunication wavelengths around 1550 nm. We demonstrate the viability of the device by receiving a 640 Gbit/s dual-polarization data signal using 16-state quadrature amplitude modulation (16QAM), without any measurable optical-signal-to-noise-ratio (OSNR) penalty compared to a commercial PBS.
We demonstrate the possibility to create optical beams with phase singularities engraved into exotic intensity landscapes imitating the shapes of a large variety of diverse plane curves. To achieve this aim, we have developed a method for directly en coding the geometric properties of some selected curve into a single azimuthal phase factor without passing through indirect encryption methods based on lengthy numerical procedures. The outcome is utilized to mould the optic axis distribution of a liquid-crystal-based inhomogeneous waveplate. The latter is finally used to sculpt the wavefront of an input optical gaussian beam via Pancharatnam-Berry phase.
We describe a macroscopic beam splitter for polar neutral molecules. A complex electrode structure is required for the beam splitter which would be very difficult to produce with traditional manufacturing methods. Instead, we make use of a nascent ma nufacturing technique: 3D printing of a plastic piece, followed by electroplating. This fabrication method opens a plethora of avenues for research, since 3D printing imposes practically no limitations on possible shapes, and the plating produces chemically robust, conductive construction elements with an almost free choice of surface material; it has the added advantage of dramatically reduced production cost and time. Our beam splitter is an electrostatic hexapole guide that smoothly transforms into two bent quadrupoles. We demonstrate the correct functioning of this device by separating a supersonic molecular beam of ND3 into two correlated fractions. It is shown that this device can be used to implement experiments with differential detection wherein one of the fractions serves as a probe and the other as a reference. Reverse operation would allow to merging of two beams of neutral polar molecules.
Optical metasurfaces have been heralded as the platform to integrate multiple functionalities in a compact form-factor, potentially replacing bulky components. A central stepping stone towards realizing this promise is the demonstration of multifunct ionality under several constraints (e.g. at multiple incident wavelengths and/or angles) in a single device -- an achievement being hampered by design limitations inherent to single-layer planar geometries. Here, we propose a general framework for the inverse design of volumetric 3D metaoptics via topology optimization, showing that even few-wavelength thick devices can achieve high-efficiency multifunctionality. We embody our framework in multiple closely-spaced patterned layers of a low-index polymer. We experimentally demonstrate our approach with an inverse-designed 3d-printed light concentrator working at five different non-paraxial angles of incidence. Our framework paves the way towards realizing multifunctional ultra-compact 3D nanophotonic devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا