ترغب بنشر مسار تعليمي؟ اضغط هنا

V-Splines and Bayes Estimate

60   0   0.0 ( 0 )
 نشر من قبل Zhanglong Cao
 تاريخ النشر 2018
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Smoothing splines can be thought of as the posterior mean of a Gaussian process regression in a certain limit. By constructing a reproducing kernel Hilbert space with an appropriate inner product, the Bayesian form of the V-spline is derived when the penalty term is a fixed constant instead of a function. An extension to the usual generalized cross-validation formula is utilized to find the optimal V-spline parameters.



قيم البحث

اقرأ أيضاً

76 - Yuri Golubev 2019
In this paper, we develop Bayes and maximum a posteriori probability (MAP) approaches to monotonicity testing. In order to simplify this problem, we consider a simple white Gaussian noise model and with the help of the Haar transform we reduce it to the equivalent problem of testing positivity of the Haar coefficients. This approach permits, in particular, to understand links between monotonicity testing and sparse vectors detection, to construct new tests, and to prove their optimality without supplementary assumptions. The main idea in our construction of multi-level tests is based on some invariance properties of specific probability distributions. Along with Bayes and MAP tests, we construct also adaptive multi-level tests that are free from the prior information about the sizes of non-monotonicity segments of the function.
In the sparse normal means model, coverage of adaptive Bayesian posterior credible sets associated to spike and slab prior distributions is considered. The key sparsity hyperparameter is calibrated via marginal maximum likelihood empirical Bayes. Fir st, adaptive posterior contraction rates are derived with respect to $d_q$--type--distances for $qleq 2$. Next, under a type of so-called excessive-bias conditions, credible sets are constructed that have coverage of the true parameter at prescribed $1-alpha$ confidence level and at the same time are of optimal diameter. We also prove that the previous conditions cannot be significantly weakened from the minimax perspective.
This paper explores a class of empirical Bayes methods for level-dependent threshold selection in wavelet shrinkage. The prior considered for each wavelet coefficient is a mixture of an atom of probability at zero and a heavy-tailed density. The mixi ng weight, or sparsity parameter, for each level of the transform is chosen by marginal maximum likelihood. If estimation is carried out using the posterior median, this is a random thresholding procedure; the estimation can also be carried out using other thresholding rules with the same threshold. Details of the calculations needed for implementing the procedure are included. In practice, the estimates are quick to compute and there is software available. Simulations on the standard model functions show excellent performance, and applications to data drawn from various fields of application are used to explore the practical performance of the approach. By using a general result on the risk of the corresponding marginal maximum likelihood approach for a single sequence, overall bounds on the risk of the method are found subject to membership of the unknown function in one of a wide range of Besov classes, covering also the case of f of bounded variation. The rates obtained are optimal for any value of the parameter p in (0,infty], simultaneously for a wide range of loss functions, each dominating the L_q norm of the sigmath derivative, with sigmage0 and 0<qle2.
An empirical Bayes approach to the estimation of possibly sparse sequences observed in Gaussian white noise is set out and investigated. The prior considered is a mixture of an atom of probability at zero and a heavy-tailed density gamma, with the mi xing weight chosen by marginal maximum likelihood, in the hope of adapting between sparse and dense sequences. If estimation is then carried out using the posterior median, this is a random thresholding procedure. Other thresholding rules employing the same threshold can also be used. Probability bounds on the threshold chosen by the marginal maximum likelihood approach lead to overall risk bounds over classes of signal sequences of length n, allowing for sparsity of various kinds and degrees. The signal classes considered are ``nearly black sequences where only a proportion eta is allowed to be nonzero, and sequences with normalized ell_p norm bounded by eta, for eta >0 and 0<ple 2. Estimation error is measured by mean qth power loss, for 0<qle 2. For all the classes considered, and for all q in (0,2], the method achieves the optimal estimation rate as nto infty and eta to 0 at various rates, and in this sense adapts automatically to the sparseness or otherwise of the underlying signal. In addition the risk is uniformly bounded over all signals. If the posterior mean is used as the estimator, the results still hold for q>1. Simulations show excellent performance.
In the class of normal regression models with a finite number of regressors, and for a wide class of prior distributions, a Bayesian model selection procedure based on the Bayes factor is consistent [Casella and Moreno J. Amer. Statist. Assoc. 104 (2 009) 1261--1271]. However, in models where the number of parameters increases as the sample size increases, properties of the Bayes factor are not totally understood. Here we study consistency of the Bayes factors for nested normal linear models when the number of regressors increases with the sample size. We pay attention to two successful tools for model selection [Schwarz Ann. Statist. 6 (1978) 461--464] approximation to the Bayes factor, and the Bayes factor for intrinsic priors [Berger and Pericchi J. Amer. Statist. Assoc. 91 (1996) 109--122, Moreno, Bertolino and Racugno J. Amer. Statist. Assoc. 93 (1998) 1451--1460]. We find that the the Schwarz approximation and the Bayes factor for intrinsic priors are consistent when the rate of growth of the dimension of the bigger model is $O(n^b)$ for $b<1$. When $b=1$ the Schwarz approximation is always inconsistent under the alternative while the Bayes factor for intrinsic priors is consistent except for a small set of alternative models which is characterized.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا