ترغب بنشر مسار تعليمي؟ اضغط هنا

Generating Multi-Agent Trajectories using Programmatic Weak Supervision

271   0   0.0 ( 0 )
 نشر من قبل Eric Zhan
 تاريخ النشر 2018
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the problem of training sequential generative models for capturing coordinated multi-agent trajectory behavior, such as offensive basketball gameplay. When modeling such settings, it is often beneficial to design hierarchical models that can capture long-term coordination using intermediate variables. Furthermore, these intermediate variables should capture interesting high-level behavioral semantics in an interpretable and manipulatable way. We present a hierarchical framework that can effectively learn such sequential generative models. Our approach is inspired by recent work on leveraging programmatically produced weak labels, which we extend to the spatiotemporal regime. In addition to synthetic settings, we show how to instantiate our framework to effectively model complex interactions between basketball players and generate realistic multi-agent trajectories of basketball gameplay over long time periods. We validate our approach using both quantitative and qualitative evaluations, including a user study comparison conducted with professional sports analysts.



قيم البحث

اقرأ أيضاً

Recently, an abundant amount of urban vehicle trajectory data has been collected in road networks. Many studies have used machine learning algorithms to analyze patterns in vehicle trajectories to predict location sequences of individual travelers. U nlike the previous studies that used a discriminative modeling approach, this research suggests a generative modeling approach to learn the underlying distributions of urban vehicle trajectory data. A generative model for urban vehicle trajectories can better generalize from training data by learning the underlying distribution of the training data and, thus, produce synthetic vehicle trajectories similar to real vehicle trajectories with limited observations. Synthetic trajectories can provide solutions to data sparsity or data privacy issues in using location data. This research proposesTrajGAIL, a generative adversarial imitation learning framework for the urban vehicle trajectory generation. In TrajGAIL, learning location sequences in observed trajectories is formulated as an imitation learning problem in a partially observable Markov decision process. The model is trained by the generative adversarial framework, which uses the reward function from the adversarial discriminator. The model is tested with both simulation and real-world datasets, and the results show that the proposed model obtained significant performance gains compared to existing models in sequence modeling.
We study the problem of controllable generation of long-term sequential behaviors, where the goal is to calibrate to multiple behavior styles simultaneously. In contrast to the well-studied areas of controllable generation of images, text, and speech , there are two questions that pose significant challenges when generating long-term behaviors: how should we specify the factors of variation to control, and how can we ensure that the generated behavior faithfully demonstrates combinatorially many styles? We leverage programmatic labeling functions to specify controllable styles, and derive a formal notion of style-consistency as a learning objective, which can then be solved using conventional policy learning approaches. We evaluate our framework using demonstrations from professional basketball players and agents in the MuJoCo physics environment, and show that existing approaches that do not explicitly enforce style-consistency fail to generate diverse behaviors whereas our learned policies can be calibrated for up to 1024 distinct style combinations.
Centralised training with decentralised execution is an important setting for cooperative deep multi-agent reinforcement learning due to communication constraints during execution and computational tractability in training. In this paper, we analyse value-based methods that are known to have superior performance in complex environments [43]. We specifically focus on QMIX [40], the current state-of-the-art in this domain. We show that the representational constraints on the joint action-values introduced by QMIX and similar methods lead to provably poor exploration and suboptimality. Furthermore, we propose a novel approach called MAVEN that hybridises value and policy-based methods by introducing a latent space for hierarchical control. The value-based agents condition their behaviour on the shared latent variable controlled by a hierarchical policy. This allows MAVEN to achieve committed, temporally extended exploration, which is key to solving complex multi-agent tasks. Our experimental results show that MAVEN achieves significant performance improvements on the challenging SMAC domain [43].
This paper considers multi-agent reinforcement learning (MARL) in networked system control. Specifically, each agent learns a decentralized control policy based on local observations and messages from connected neighbors. We formulate such a networke d MARL (NMARL) problem as a spatiotemporal Markov decision process and introduce a spatial discount factor to stabilize the training of each local agent. Further, we propose a new differentiable communication protocol, called NeurComm, to reduce information loss and non-stationarity in NMARL. Based on experiments in realistic NMARL scenarios of adaptive traffic signal control and cooperative adaptive cruise control, an appropriate spatial discount factor effectively enhances the learning curves of non-communicative MARL algorithms, while NeurComm outperforms existing communication protocols in both learning efficiency and control performance.
We study decentralized stochastic linear bandits, where a network of $N$ agents acts cooperatively to efficiently solve a linear bandit-optimization problem over a $d$-dimensional space. For this problem, we propose DLUCB: a fully decentralized algor ithm that minimizes the cumulative regret over the entire network. At each round of the algorithm each agent chooses its actions following an upper confidence bound (UCB) strategy and agents share information with their immediate neighbors through a carefully designed consensus procedure that repeats over cycles. Our analysis adjusts the duration of these communication cycles ensuring near-optimal regret performance $mathcal{O}(dlog{NT}sqrt{NT})$ at a communication rate of $mathcal{O}(dN^2)$ per round. The structure of the network affects the regret performance via a small additive term - coined the regret of delay - that depends on the spectral gap of the underlying graph. Notably, our results apply to arbitrary network topologies without a requirement for a dedicated agent acting as a server. In consideration of situations with high communication cost, we propose RC-DLUCB: a modification of DLUCB with rare communication among agents. The new algorithm trades off regret performance for a significantly reduced total communication cost of $mathcal{O}(d^3N^{2.5})$ over all $T$ rounds. Finally, we show that our ideas extend naturally to the emerging, albeit more challenging, setting of safe bandits. For the recently studied problem of linear bandits with unknown linear safety constraints, we propose the first safe decentralized algorithm. Our study contributes towards applying bandit techniques in safety-critical distributed systems that repeatedly deal with unknown stochastic environments. We present numerical simulations for various network topologies that corroborate our theoretical findings.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا