ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin-orbital tidal dynamics and tidal heating in the TRAPPIST-1 multi-planet system

78   0   0.0 ( 0 )
 نشر من قبل Valeri Makarov
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We perform numerical simulations of the TRAPPIST-1 system of seven exoplanets orbiting a nearby M dwarf, starting with a previously suggested stable configuration. The long-term stability of this configuration is confirmed, but the motion of planets is found to be chaotic. The eccentricity values are found to vary within finite ranges. The rates of tidal dissipation and tidal evolution of orbits are estimated, assuming an Earth-like rheology for the planets. We find that under this assumption the planets b, d, e were captured in the 3:2 or higher spin-orbit resonances during the initial spin-down but slipped further down into the 1:1 resonance. Dependent on its rheology, the innermost planet b may be captured in a stable pseudosynchronous rotation. Non-synchronous rotation ensures higher levels of tidal dissipation and internal heating. The positive feedback between the viscosity and the dissipation rate -- and the ensuing runaway heating -- are terminated by a few self-regulation processes. When the temperature is high and the viscosity is low enough, the planet spontaneously leaves the 3:2 resonance. Further heating is stopped either by passing the peak dissipation or by the emergence of partial melt in the mantle. In the post-solidus state, the tidal dissipation is limited to the levels supported by the heat transfer efficiency. The tides on the host star are unlikely to have had a significant dynamical impact. The tides on the synchronized inner planets tend to reduce these planets orbital eccentricity, possibly contributing thereby to the systems stability.



قيم البحث

اقرأ أيضاً

TRAPPIST-1 (Gillon et al. 2017) is an extremely compact planetary system: seven earth-sized planets orbit at distances lower than 0.07 AU around one of the smallest M-dwarf known in the close neighborhood of the Sun (with a mass of less than 0.09 $M_ odot$). With 3 planets within the classical habitable zone, this system represents an interesting observational target for future instruments such as the JWST (e.g. Barstow & Irwin 2016). As the planets are close-in, tidal interactions play a crucial role in the evolution of the system by controlling both orbital configurations and rotational states of the planets. For the closest planets, the associated tidal dissipation could have an influence on their internal evolution and potentially on their climate and habitability Turbet et al. (2018). Following (Tobie et al. 2005), we build multilayer models of the internal structure of the TRAPPIST-1 planets accounting for the mass and radius of Grimm et al. (2018), then we compute the tidal response and estimate the tidal heat flux of each planet as well as the profile of tidal heating with depth. Finally, we compare our results to the homogeneous model of Efroimsky (2012) and assess the impact heating rate on the thermal state of each layer of the planet.
We study the dynamical evolution of the TRAPPIST-1 system under the influence of orbital circularization through tidal interaction with the central star. We find that systems with parameters close to the observed one evolve into a state where consecu tive planets are linked by first order resonances and consecutive triples, apart from planets c, d and e, by connected three body Laplace resonances. The system expands with period ratios increasing and mean eccentricities decreasing with time. This evolution is largely driven by tides acting on the innermost planets which then influence the outer ones. In order that deviations from commensurability become significant only on $Gy$ time scales or longer, we require that the tidal parameter associated with the planets has to be such that $Q > sim 10^{2-3}.$ At the same time, if we start with two subsystems, with the inner three planets comprising the inner one, $Q$ associated with the planets has to be on the order (and not significantly exceeding) $10^{2-3}$ for the two subsystems to interact and end up in the observed configuration. This scenario is also supported by modelling of the evolution through disk migration which indicates that the whole system cannot have migrated inwards together. Also in order to avoid large departures from commensurabilities, the system cannot have stalled at a disk inner edge for significant time periods. We discuss the habitability consequences of the tidal dissipation implied by our modelling, concluding that planets d, e and f are potentially in habitable zones.
196 - J.C.B. Papaloizou 2011
We study systems of close orbiting planets evolving under the influence of tidal circularization. It is supposed that a commensurability forms through the action of disk induced migration and orbital circularization. After the system enters an inner cavity or the disk disperses the evolution continues under the influence of tides due to the central star which induce orbital circularization. We derive approximate analytic models that describe the evolution away from a general first order resonance that results from tidal circularization in a two planet system and which can be shown to be a direct consequence of the conservation of energy and angular momentum. We consider the situation when the system is initially very close to resonance and also when the system is between resonances. We also perform numerical simulations which confirm these models and then apply them to two and four planet systems chosen to have parameters related to the GJ581 and HD10180 systems. We also estimate the tidal dissipation rates through effective quality factors that could result in evolution to observed period ratios within the lifetimes of the systems. Thus the survival of, or degree of departure from, close commensurabilities in observed systems may be indicative of the effectiveness of tidal disipation, a feature which in turn may be related to the internal structure of the planets involved.
With the discovery of TRAPPIST-1 and its seven planets within 0.06 au, the correct treatment of tidal interactions is becoming necessary. The eccentricity, rotation, and obliquity of the planets of TRAPPIST-1 are indeed the result of tidal evolution over the lifetime of the system. Tidal interactions can also lead to tidal heating in the interior of the planets, which can then be responsible for volcanism and/or surface deformation. In the majority of studies to estimate the rotation of close-in planets or their tidal heating, the planets are considered as homogeneous bodies and their rheology is often taken to be a Maxwell rheology. We investigate here the impact of considering a multi-layer structure and an Andrade rheology on the way planets dissipate tidal energy as a function of the excitation frequency. We use an internal structure model, which provides the radial profile of structural and rheological quantities to compute the tidal response of multi-layer bodies. We then compare the outcome to the dissipation of a homogeneous planet. We find that for purely rocky bodies, it is possible to approximate the response of a multi-layer planet by that of a homogeneous planet. However, using average profiles of shear modulus and viscosity to compute the homogeneous planet response leads to an overestimation of the averaged dissipation. We provide fitted values of shear modulus and viscosity to be able to reproduce the response of various types of rocky planets. However, we find that if the planet has an icy layer, its tidal response can no longer be approximated by a homogeneous body because of the very different properties of the icy layers, which lead to a second dissipation peak at higher frequencies. We also compute the tidal heating profiles for the outer TRAPPIST-1 planets (e to h).
We determined the flux ratios of the heavy and eccentric planet XO-3b to its parent star in the four IRAC bands of the Spitzer Space Telescope: 0.101% +- 0.004% at 3.6 micron; 0.143% +- 0.006% at 4.5 micron; 0.134% +- 0.049% at 5.8 micron and 0.150% +- 0.036% at 8.0 micron. The flux ratios are within [-2.2,0.3, -0.8, -1.7]-sigma of the model of XO-3b with a thermally inverted stratosphere in the 3.6 micron, 4.5 micron, 5.8 micron and 8.0 micron channels, respectively. XO-3b has a high illumination from its parent star (Fp ~(1.9 - 4.2) x 10^9 ergs cm^-2 s^-1) and is thus expected to have a thermal inversion, which we indeed observe. When combined with existing data for other planets, the correlation between the presence of an atmospheric temperature inversion and the substellar flux is insufficient to explain why some high insolation planets like TrES-3 do not have stratospheric
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا