ﻻ يوجد ملخص باللغة العربية
We study systems of close orbiting planets evolving under the influence of tidal circularization. It is supposed that a commensurability forms through the action of disk induced migration and orbital circularization. After the system enters an inner cavity or the disk disperses the evolution continues under the influence of tides due to the central star which induce orbital circularization. We derive approximate analytic models that describe the evolution away from a general first order resonance that results from tidal circularization in a two planet system and which can be shown to be a direct consequence of the conservation of energy and angular momentum. We consider the situation when the system is initially very close to resonance and also when the system is between resonances. We also perform numerical simulations which confirm these models and then apply them to two and four planet systems chosen to have parameters related to the GJ581 and HD10180 systems. We also estimate the tidal dissipation rates through effective quality factors that could result in evolution to observed period ratios within the lifetimes of the systems. Thus the survival of, or degree of departure from, close commensurabilities in observed systems may be indicative of the effectiveness of tidal disipation, a feature which in turn may be related to the internal structure of the planets involved.
We perform numerical simulations of the TRAPPIST-1 system of seven exoplanets orbiting a nearby M dwarf, starting with a previously suggested stable configuration. The long-term stability of this configuration is confirmed, but the motion of planets
A planets orbital orientation relative to an observers line of sight determines the chord length for a transiting planet, i.e., the projected distance a transiting planet travels across the stellar disc. For a given circular orbit, the chord length d
A commonly noted feature of the population of multi-planet extrasolar systems is the rarity of planet pairs in low-order mean-motion resonances. We revisit the physics of resonance capture via convergent disk-driven migration. We point out that for p
Recent studies claimed that planets around the same star have similar sizes and masses and regular spacings, and that planet pairs usually show ordered sizes such that the outer planet is usually the larger one. Here I show that these patterns can be
We report the detection of two new planets from the Anglo-Australian Planet Search. These planets orbit two stars each previously known to host one planet. The new planet orbiting HD 142 has a period of 6005pm427 days, and a minimum mass of 5.3M_Jup.