ترغب بنشر مسار تعليمي؟ اضغط هنا

MeerTime - the MeerKAT Key Science Program on Pulsar Timing

290   0   0.0 ( 0 )
 نشر من قبل Matthew Bailes
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The MeerKAT telescope represents an outstanding opportunity for radio pulsar timing science with its unique combination of a large collecting area and aperture efficiency (effective area $sim$7500 m$^2$), system temperature ($T<20$K), high slew speeds (1-2 deg/s), large bandwidths (770 MHz at 20cm wavelengths), southern hemisphere location (latitude $sim -30^circ$) and ability to form up to four sub-arrays. The MeerTime project is a five-year program on the MeerKAT array by an international consortium that will regularly time over 1000 radio pulsars to perform tests of relativistic gravity, search for the gravitational wave signature induced by supermassive black hole binaries in the timing residuals of millisecond pulsars, explore the interiors of neutron stars through a pulsar glitch monitoring programme, explore the origin and evolution of binary pulsars, monitor the swarms of pulsars that inhabit globular clusters and monitor radio magnetars. In addition to these primary programmes, over 1000 pulsars will have their arrival times monitored and the data made immediately public. The MeerTime pulsar backend comprises two server-class machines each of which possess four Graphics Processing Units. Up to four pulsars can be coherently dedispersed simultaneously up to dispersion measures of over 1000 pc cm$^{-3}$. All data will be provided in psrfits format. The MeerTime backend will be capable of producing coherently dedispersed filterbank data for timing multiple pulsars in the cores of globular clusters that is useful for pulsar searches of tied array beams. All MeerTime data will ultimately be made available for public use, and any published results will include the arrival times and profiles used in the results.



قيم البحث

اقرأ أيضاً

149 - M. Bailes , A. Jameson , F. Abbate 2020
We describe system verification tests and early science results from the pulsar processor (PTUSE) developed for the newly-commissioned 64-dish SARAO MeerKAT radio telescope in South Africa. MeerKAT is a high-gain (~2.8 K/Jy) low-system temperature (~ 18 K at 20cm) radio array that currently operates from 580-1670 MHz and can produce tied-array beams suitable for pulsar observations. This paper presents results from the MeerTime Large Survey Project and commissioning tests with PTUSE. Highlights include observations of the double pulsar J0737-3039A, pulse profiles from 34 millisecond pulsars from a single 2.5h observation of the Globular cluster Terzan 5, the rotation measure of Ter5O, a 420-sigma giant pulse from the Large Magellanic Cloud pulsar PSR J0540-6919, and nulling identified in the slow pulsar PSR J0633-2015. One of the key design specifications for MeerKAT was absolute timing errors of less than 5 ns using their novel precise time system. Our timing of two bright millisecond pulsars confirm that MeerKAT delivers exceptional timing. PSR J2241-5236 exhibits a jitter limit of <4 ns per hour whilst timing of PSR J1909-3744 over almost 11 months yields an rms residual of 66 ns with only 4 min integrations. Our results confirm that the MeerKAT is an exceptional pulsar telescope. The array can be split into four separate sub-arrays to time over 1000 pulsars per day and the future deployment of S-band (1750-3500 MHz) receivers will further enhance its capabilities.
We present the specifications of the MeerKAT Karoo Array Telescope, the South African Square Kilometre Array Precursor. Some of the key science for MeerKAT is described in this document. We invite the community to submit proposals for Large Key Projects.
Pulsar timing arrays (PTAs) can be used to detect and study gravitational waves in the nanohertz band (i.e., wavelengths of order light-years). This requires high-precision, decades-long data sets from sensitive, instrumentally stable telescopes. NAN OGrav and its collaborators in the International Pulsar Timing Array consortium are on the verge of the first detection of the stochastic background produced by supermassive binary black holes, which form via the mergers of massive galaxies. By providing Northern hemisphere sky coverage with exquisite sensitivity and higher frequency coverage compared to the SKA, a Next-Generation Very Large Array (ngVLA) will be a fundamental component in the next phase of nanohertz GW astrophysics, enabling detailed characterization of the stochastic background and the detection of individual sources contributing to the background, as well as detections of (or stringent constraints on) cosmic strings and other exotica. Here we summarize the scientific goals of PTAs and the technical requirements for the ngVLA to play a significant role in the characterization of the nanohertz gravitational wave universe.
Pulsar timing is a technique that uses the highly stable spin periods of neutron stars to investigate a wide range of topics in physics and astrophysics. Pulsar timing arrays (PTAs) use sets of extremely well-timed pulsars as a Galaxy-scale detector with arms extending between Earth and each pulsar in the array. These challenging experiments look for correlated deviations in the pulsars timing that are caused by low-frequency gravitational waves (GWs) traversing our Galaxy. PTAs are particularly sensitive to GWs at nanohertz frequencies, which makes them complementary to other space- and ground-based detectors. In this chapter, we will describe the methodology behind pulsar timing; provide an overview of the potential uses of PTAs; and summarise where current PTA-based detection efforts stand. Most predictions expect PTAs to successfully detect a cosmological background of GWs emitted by supermassive black-hole binaries and also potentially detect continuous-wave emission from binary supermassive black holes, within the next several years.
201 - R. N. Manchester 2012
A pulsar timing array (PTA), in which observations of a large sample of pulsars spread across the celestial sphere are combined, allows investigation of global phenomena such as a background of gravitational waves or instabilities in atomic timescale s that produce correlated timing residuals in the pulsars of the array. The Parkes Pulsar Timing Array (PPTA) is an implementation of the PTA concept based on observations with the Parkes 64-m radio telescope. A sample of 20 millisecond pulsars is being observed at three radio-frequency bands, 50cm (~700 MHz), 20cm (~1400 MHz) and 10cm (~3100 MHz), with observations at intervals of 2 - 3 weeks. Regular observations commenced in early 2005. This paper describes the systems used for the PPTA observations and data processing, including calibration and timing analysis. The strategy behind the choice of pulsars, observing parameters and analysis methods is discussed. Results are presented for PPTA data in the three bands taken between 2005 March and 2011 March. For ten of the 20 pulsars, rms timing residuals are less than 1 microsec for the best band after fitting for pulse frequency and its first time derivative. Significant red timing noise is detected in about half of the sample. We discuss the implications of these results on future projects including the International Pulsar Timing Array (IPTA) and a PTA based on the Square Kilometre Array. We also present an extended PPTA data set that combines PPTA data with earlier Parkes timing data for these pulsars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا