ﻻ يوجد ملخص باللغة العربية
An idea for an application of the quantum annealing mechanism to construct a projection measurement in a collective space is proposed. We use the annealing mechanism to drive the pointer degree of freedom associated with the measurement process. The parameters in its problem Hamiltonian is given not as classical variables but as quantum variables (states). By additionally introducing successive short interactions so that the back reaction to the quantum state (to be measured) can be controlled, we invent a quantum mechanically parametrized quantum annealing process. Applying to a particular problem of discrimination of two collective states , we find that the process by the quantum mechanically parametrized annealing arrives at projection measurement in the collective space when the parametrizing quantum variables themselves are orthogonal (or distinguishable).
Recently, there has been a renewed interest in the quantification of coherence or other coherence-like concepts within the framework of quantum resource theory. However, rigorously defined or not, the notion of coherence or decoherence has already be
Reinforcement learning has witnessed recent applications to a variety of tasks in quantum programming. The underlying assumption is that those tasks could be modeled as Markov Decision Processes (MDPs). Here, we investigate the feasibility of this as
We propose the gentle measurement principle (GMP) as one of the principles at the foundation of quantum mechanics. It asserts that if a set of states can be distinguished with high probability, they can be distinguished by a measurement that leaves t
New annealing schedules for quantum annealing are proposed based on the adiabatic theorem. These schedules exhibit faster decrease of the excitation probability than a linear schedule. To derive this conclusion, the asymptotic form of the excitation
Entanglement lies at the core of quantum algorithms designed to solve problems that are intractable by classical approaches. One such algorithm, quantum annealing (QA), provides a promising path to a practical quantum processor. We have built a serie