ﻻ يوجد ملخص باللغة العربية
The structure and dynamics of one-dimensional binary Bose gases forming quantum droplets is studied by solving the corresponding amended Gross-Pitaevskii equation. Two physically different regimes are identified, corresponding to small droplets of an approximately Gaussian shape and large `puddles with a broad flat-top plateau. Small droplets collide quasi-elastically, featuring the soliton-like behavior. On the other hand, large colliding droplets may merge or suffer fragmentation, depending on their relative velocity. The frequency of a breathing excited state of droplets, as predicted by the dynamical variational approximation based on the Gaussian ansatz, is found to be in good agreement with numerical results. Finally, the stability diagram for a single droplet with respect to shape excitations with a given wave number is drawn, being consistent with preservation of the Weber number for large droplets.
We study the statistical mechanics and the dynamical relaxation process of modulationally unstable one-dimensional quantum droplets described by a modified Gross-Pitaevskii equation. To determine the classical partition function thereof, we leverage
Ultracold dipolar droplets have been realized in a series of ground-breaking experiments, where the stability of the droplet state is attributed to beyond-mean-field effects in the form of the celebrated Lee-Huang-Yang (LHY) correction. We scrutinize
We study two-dimensional (2D) vortex quantum droplets (QDs) trapped by a thicker transverse confinement with a>1um. Under this circumstance, the Lee-Huang-Yang (LHY) term should be described by its original form in the three-dimensional (3D) configur
We study a one-dimensional disordered Bose fluid using bosonization, the replica method and a nonperturbative functional renormalization-group approach. We find that the Bose-glass phase is described by a fully attractive strong-disorder fixed point
We theoretically investigate the self-evaporation dynamics of quantum droplets in a 41K-87Rb mixture, in free-space. The dynamical formation of the droplet and the effects related to the presence of three-body losses are analyzed by means of numerica