ترغب بنشر مسار تعليمي؟ اضغط هنا

Self-evaporation dynamics of quantum droplets in a 41K-87Rb mixture

108   0   0.0 ( 0 )
 نشر من قبل Michele Modugno
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We theoretically investigate the self-evaporation dynamics of quantum droplets in a 41K-87Rb mixture, in free-space. The dynamical formation of the droplet and the effects related to the presence of three-body losses are analyzed by means of numerical simulations. We identify a regime of parameters allowing for the observation of the droplet self-evaporation in a feasible experimental setup.

قيم البحث

اقرأ أيضاً

We report on the production of a 41K-87Rb dual-species Bose-Einstein condensate in a hybrid trap, consisting of a magnetic quadrupole and an optical dipole potential. After loading both atomic species in the trap, we cool down 87Rb first by magnetic and then by optical evaporation, while 41K is sympathetically cooled by elastic collisions with 87Rb. We eventually produce two-component condensates with more than 10^5 atoms and tunable species population imbalance. We observe the immiscibility of the quantum mixture by measuring the density profile of each species after releasing them from the trap.
We report on the formation of heteronuclear quantum droplets in an attractive bosonic mixture of 41K and 87Rb. We observe long-lived self-bound states, both in free space and in an optical waveguide. In the latter case, the dynamics under the effect of a species-dependent force confirms their bound nature. By tuning the interactions from the weakly to the strongly attractive regime, we study the transition from expanding to localized states, in both geometries. We compare the experimental results with beyond mean-field theory and we find a good agreement in the full range of explored interactions. Our findings open up the production of long-lived droplets with important implications for further research.
We report on the dynamical formation of self-bound quantum droplets in attractive mixtures of $^{39}$K atoms. Considering the experimental observations of Semeghini et al., Phys. Rev. Lett. 120, 235301 (2018), we perform numerical simulations to unde rstand the relevant processes involved in the formation of a metastable droplet from an out-of-equilibrium mixture. We first analyze the so-called self-evaporation mechanism, where the droplet dissipates energy by releasing atoms, and then we consider the effects of losses due to three-body recombinations and to the balancing of populations in the mixture. We discuss the importance of these three mechanisms in the observed droplet dynamics and their implications for future experiments.
Self-bound quantum droplets are a newly discovered phase in the context of ultracold atoms. In this work we report their experimental realization following the original proposal by Petrov [Phys. Rev. Lett. 115, 155302 (2015)], using an attractive bos onic mixture. In this system spherical droplets form due to the balance of competing attractive and repulsive forces, provided by the mean-field energy close to the collapse threshold and the first-order correction due to quantum fluctuations. Thanks to an optical levitating potential with negligible residual confinement we observe self-bound droplets in free space and we characterize the conditions for their formation as well as their equilibrium properties. This work sets the stage for future studies on quantum droplets, from the measurement of their peculiar excitation spectrum, to the exploration of their superfluid nature.
Self-bound many-body systems are formed through a balance of attractive and repulsive forces and occur in many physical scenarios. Liquid droplets are an example of a self-bound system, formed by a balance of the mutual attractive and repulsive force s that derive from different components of the inter-particle potential. It has been suggested that self-bound ensembles of ultracold atoms should exist for atom number densities that are 10^8 times lower than in a helium droplet, which is formed from a dense quantum liquid. However, such ensembles have been elusive up to now because they require forces other than the usual zero-range contact interaction, which is either attractive or repulsive but never both. On the basis of the recent finding that an unstable bosonic dipolar gas can be stabilized by a repulsive many-body term, it was predicted that three-dimensional self-bound quantum droplets of magnetic atoms should exist. Here we report the observation of such droplets in a trap-free levitation field. We find that this dilute magnetic quantum liquid requires a minimum, critical number of atoms, below which the liquid evaporates into an expanding gas as a result of the quantum pressure of the individual constituents. Consequently, around this critical atom number we observe an interaction-driven phase transition between a gas and a self-bound liquid in the quantum degenerate regime with ultracold atoms. These droplets are the dilute counterpart of strongly correlated self-bound systems such as atomic nuclei and helium droplets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا