ترغب بنشر مسار تعليمي؟ اضغط هنا

Correlations between X-ray properties and Black Hole Mass in AGN: towards a new method to estimate black hole mass from short exposure X-ray observations

115   0   0.0 ( 0 )
 نشر من قبل Julian Mayers
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Several investigations of the X-ray variability of active galactic nuclei (AGN) using the normalised excess variance (${sigma^2_{rm NXS}}$) parameter have shown that variability has a strong anti-correlation with black hole mass ($M_{rm BH}$) and X-ray luminosity ($L_{rm X}$). In this study we confirm these previous correlations and find no evidence of a redshift evolution. Using observations from XMM-Newton, we determine the ${sigma^2_{rm NXS}}$ and $L_{rm X}$ for a sample of 1091 AGN drawn from the XMM-Newton Cluster Survey (XCS) - making this the largest study of X-ray spectral properties of AGNs. We created light-curves in three time-scales; 10 ks, 20 ks and 40 ks and used these to derive scaling relations between ${sigma^2_{rm NXS}}$, $L_{rm X}$ (2.0-10 keV range) and literature estimates of $M_{rm BH}$ from reverberation mapping. We confirm the anti-correlation between $M_{rm BH}$ and ${sigma^2_{rm NXS}}$ and find a positive correlation between $M_{rm BH}$ and $L_{rm X}$. The use of ${sigma^2_{rm NXS}}$ is practical only for pointed observations where the observation time is tens of kiloseconds. For much shorter observations one cannot accurately quantify variability to estimate $M_{rm BH}$. Here we describe a method to derive $L_{rm X}$ from short duration observations and used these results as an estimate for $M_{rm BH}$. We find that it is possible to estimate $L_{rm X}$ from observations of just a few hundred seconds and that when correlated with $M_{rm BH}$, the relation is statistically similar to the relation of $M_{rm BH}$-$L_{rm X}$ derived from a spectroscopic analysis of full XMM observations. This method may be particularly useful to the eROSITA mission, an all-sky survey, which will detect $>$10$^{6}$ AGN.

قيم البحث

اقرأ أيضاً

We present an analysis of the spectral properties observed in X-rays from active galactic nucleus BL Lacertae using RXTE, Suzaku, ASCA, BeppoSAX, and Swift observations. The total time covered by these observations is approximately 20 years. We show that this source undergoes X-ray spectral transitions from the low hard state (LHS) through the intermediate state (IS) to the high soft state (HSS) during these observations. During the RXTE observations (1997 -- 2001, {180 ks, for a total 145 datasets}), the source was approximately 75%, 20% and only 5 of the time in the IS, LHS, and HSS, respectively. We also used Swift observations (470 datasets, for a total 800 ks), which occurred during 12 years (2005 -- 2016), the (0.3 -- 200 keV) data of BeppoSAX (1997 -- 2000, 160 ks), and the (0.3 -- 10 keV) data of ASCA (1995 -- 1999, 160 ks). Two observations of Suzaku (2006, 2013; 50 ks) in combinations with long-term RXTE and Swift data-sets allow us to describe all spectral states of BL Lac. The spectra of BL Lac are well fitted by the bulk motion Comptonization (BMC) model for all spectral states. We have established the photon index saturation level, Gamma_{sat}=2.2+/-0.1, in the Gamma vs. mass accretion rate (Mdot) correlation. This Gamma-Mdot correlation allows us to estimate the black-hole (BH) mass in BL Lac to be M_{BH}~3x10^7 M_sol for a distance of 300 Mpc. For the BH mass estimate, we use the scaling method taking stellar-mass Galactic BHs 4U~1543--47 and GX~339--4 as reference sources. The Gamma-Mdot correlation revealed in BL Lac is similar to those in a number of stellar-mass Galactic BHs and two recently studied intermediate-mass extragalactic BHs. It clearly shows the correlation along with the very extended $Gamma$ saturation at ~ 2.2. This is robust observational evidence for the presence of a BH in BL Lac.
We propose a new method of estimation of the black hole masses in AGN based on the normalized excess variance, sigma_{nxs}^2. We derive a relation between sigma_{nxs}^2, the length of the observation, T, the light curve bin size, Delta t, and the bla ck hole mass, assuming that (i) the power spectrum above the high frequency break, f_{bf}, has a slope of -2, (ii) the high frequency break scales with black hole mass, (iii) the power spectrum amplitude (in frequency x power space) is universal and (iv) sigma_{nxs}^2 is calculated from observations of length T < 1/f_{bf}. Values of black hole masses in AGN obtained with this method are consistent with estimates based on other techniques such as reverberation mapping or the Mbh-stellar velocity dispersion relation. The method is formally equivalent to methods based on power spectrum scaling with mass but the use of the normalized excess variance has the big advantage of being applicable to relatively low quality data.
A calibration is made for the correlation between the X-ray Variability Amplitude (XVA) and Black Hole (BH) mass. The correlation for 21 reverberation-mapped Active Galactic Nuclei (AGN) appears very tight, with an intrinsic dispersion of 0.20 dex. T he intrinsic dispersion of 0.27 dex can be obtained if BH masses are estimated from the stellar velocity dispersions. We further test the uncertainties of mass estimates from XVAs for objects which have been observed multiple times with good enough data quality. The results show that the XVAs derived from multiple observations change by a factor of 3. This means that BH mass uncertainty from a single observation is slightly worse than either reverberation-mapping or stellar velocity dispersion measurements; however BH mass estimates with X-ray data only can be more accurate if the mean XVA value from more observations is used. Applying this relation, the BH mass of RE J1034+396 is found to be $4^{+3}_{-2} times 10^6$ $M_{odot}$. The high end of the mass range follows the relationship between the 2$f_0$ frequencies of high-frequency QPO and the BH masses derived from the Galactic X-ray binaries. We also calculate the high-frequency constant $C= 2.37 M_odot$ Hz$^{-1}$ from 21 reverberation-mapped AGN. As suggested by Gierlinski et al., $M_{rm BH}=C/C_{rm M}$, where $C_{rm M}$ is the high-frequency variability derived from XVA. Given the similar shape of power-law dominated X-ray spectra in ULXs and AGN, this can be applied to BH mass estimates of ULXs. We discuss the observed QPO frequencies and BH mass estimates in the Ultra-Luminous X-ray source M82 X-1 and NGC 5408 X-1 and favor ULXs as intermediate mass BH systems (abridged).
92 - A. Markowitz 2009
We present the X-ray broadband power spectral density function (PSD) of the X-ray-luminous Seyfert IC 4329a, constructed from light curves obtained via Rossi X-ray Timing Explorer monitoring and an XMM-Newton observation. Modeling the 3-10 keV PSD us ing a broken power-law PSD shape, a break in power-law slope is significantly detected at a temporal frequency of 2.5(+2.5,-1.7) * 10^-6 Hz, which corresponds to a PSD break time scale T_b of 4.6(+10.1,-2.3) days. Using the relation between T_b, black hole mass M_BH, and bolometric luminosity as quantified by McHardy and coworkers, we infer a black hole mass estimate of M_BH = 1.3(+1.0,-0.3) * 10^8 solar masses and an accretion rate relative to Eddington of 0.21(+0.06,-0.10) for this source. Our estimate of M_BH is consistent with other estimates, including that derived by the relation between M_BH and stellar velocity dispersion. We also present PSDs for the 10-20 and 20-40 keV bands; they lack sufficient temporal frequency coverage to reveal a significant break, but are consistent with the same PSD shape and break frequency as in the 3-10 keV band.
AT2019wey (SRGA J043520.9+552226, SRGE J043523.3+552234) is a transient first reported by the ATLAS optical survey in 2019 December. It rose to prominence upon detection, three months later, by the Spektrum-Roentgen-Gamma (SRG) mission in its first a ll-sky survey. X-ray observations reported in Yao et al. suggest that AT2019wey is a Galactic low-mass X-ray binary (LMXB) with a black hole (BH) or neutron star (NS) accretor. Here we present ultraviolet, optical, near-infrared, and radio observations of this object. We show that the companion is a short-period (P < 16 hr) low-mass (< 1 Msun) star. We consider AT2019wey to be a candidate BH system since its locations on the L_radio--L_X and L_opt--L_X diagrams are closer to BH binaries than NS binaries. We demonstrate that from 2020 June to August, despite the more than 10 times brightening at radio and X-ray wavelengths, the optical luminosity of AT2019wey only increased by 1.3--1.4 times. We interpret the UV/optical emission before the brightening as thermal emission from a truncated disk in a hot accretion flow and the UV/optical emission after the brightening as reprocessing of the X-ray emission in the outer accretion disk. AT2019wey demonstrates that combining current wide-field optical surveys and SRG provides a way to discover the emerging population of short-period BH LMXB systems with faint X-ray outbursts.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا