ترغب بنشر مسار تعليمي؟ اضغط هنا

Possible interaction between baryons and dark-matter particles revealed by the first stars

56   0   0.0 ( 0 )
 نشر من قبل Rennan Barkana
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Rennan Barkana




اسأل ChatGPT حول البحث

The cosmic radio-frequency spectrum is expected to show a strong absorption signal corresponding to the 21-centimetre-wavelength transition of atomic hydrogen around redshift 20, which arises from Lyman-alpha radiation from some of the earliest stars. By observing this 21-centimetre signal - either its sky-averaged spectrum or maps of its fluctuations, obtained using radio interferometers - we can obtain information about cosmic dawn, the era when the first astrophysical sources of light were formed. The recent detection of the global 21-centimetre spectrum reveals a stronger absorption than the maximum predicted by existing models, at a confidence level of 3.8 standard deviations. Here we report that this absorption can be explained by the combination of radiation from the first stars and excess cooling of the cosmic gas induced by its interaction with dark matter. Our analysis indicates that the spatial fluctuations of the 21-centimetre signal at cosmic dawn could be an order of magnitude larger than previously expected and that the dark-matter particle is no heavier than several proton masses, well below the commonly predicted mass of weakly interacting massive particles. Our analysis also confirms that dark matter is highly non-relativistic and at least moderately cold, and primordial velocities predicted by models of warm dark matter are potentially detectable. These results indicate that 21-centimetre cosmology can be used as a dark-matter probe.



قيم البحث

اقرأ أيضاً

48 - Fernand M Renard 2018
We propose further tests of the assumption that the mass of the heavy standard particles ($Z,W,t,...$) arises from a special coupling with dark matter. We look for effects of new interactions due to dark matter exchanges between heavy particles in several $e^+e^-$ and hadronic collision processes.
104 - Fabio Iocco 2011
If Dark Matter (DM) is composed by Weakly Interacting Massive Particles, its annihilation in the halos harboring the earliest star formation episode may strongly influence the first generation of stars (Population III). Whereas DM annihilation at ear ly stages of gas collapse does not dramatically affect the properties of the cloud, the formation of a hydrostatic object (protostar) and its evolution toward the main sequence may be delayed. This process involves DM concentrated in the center of the halo by gravitational drag, and no consensus is yet reached over whether this can push the initial mass of Population III to higher masses. DM can also be captured through scattering over the baryons in a dense object, onto or very close to the Main Sequence. This mechanism can affect formed stars and in principle prolonge their lifetimes. The strength of both mechanisms depends upon several environmental conditions and on DM parameters; such spread in the parameter space leads to very different scenarios for the observables in the Population. Here I summarize the state of the art in modelling and observational expectations, eventually highlighting the most critical assumptions and sources of uncertainty.
We present a study of the relation between dark matter halo mass and the baryonic content of host galaxies, quantified via luminosity and stellar mass. Our investigation uses 154 deg2 of Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS) lensin g and photometric data, obtained from the CFHT Legacy Survey. We employ a galaxy-galaxy lensing halo model which allows us to constrain the halo mass and the satellite fraction. Our analysis is limited to lenses at redshifts between 0.2 and 0.4. We express the relationship between halo mass and baryonic observable as a power law. For the luminosity-halo mass relation we find a slope of 1.32+/-0.06 and a normalisation of 1.19+0.06-0.07x10^13 h70^-1 Msun for red galaxies, while for blue galaxies the best-fit slope is 1.09+0.20-0.13 and the normalisation is 0.18+0.04-0.05x10^13 h70^-1 Msun. Similarly, we find a best-fit slope of 1.36+0.06-0.07 and a normalisation of 1.43+0.11-0.08x10^13 h70^-1 Msun for the stellar mass-halo mass relation of red galaxies, while for blue galaxies the corresponding values are 0.98+0.08-0.07 and 0.84+0.20-0.16x10^13 h70^-1 Msun. For red lenses, the fraction which are satellites tends to decrease with luminosity and stellar mass, with the sample being nearly all satellites for a stellar mass of 2x10^9 h70^-2 Msun. The satellite fractions are generally close to zero for blue lenses, irrespective of luminosity or stellar mass. This, together with the shallower relation between halo mass and baryonic tracer, is a direct confirmation from galaxy-galaxy lensing that blue galaxies reside in less clustered environments than red galaxies. We also find that the halo model, while matching the lensing signal around red lenses well, is prone to over-predicting the large-scale signal for faint and less massive blue lenses. This could be a further indication that these galaxies tend to be more isolated than assumed. [abridged]
359 - A.V. Khoperskov 2013
Using $N$-body simulations ($Nsim 10^6 - 10^7$), we examine how a non-axisymmetric dark halo affects the dynamical evolution of the structure in collisionless (stellar) discs. We demonstrate how the model parameters such as mass of the halo, initial conditions in the disc and the halo axes ratio affect morphology and kinematics of the stellar discs. We show that a non-axisymmetric halo can generate a large-scale spiral density pattern in the embedded stellar disc. The pattern is observed in the disc for many periods of its revolution, even if the disc is gravitationally over-stable. The growth of the spiral arms is not accompanied by significant dynamical heating of the disc, irrelevant to its initial parameters. We also investigate transformation of the dark halos shape driven by the long-lived spiral pattern in the disc . We show that the analysis of the velocity field in the stellar disc and in the spiral pattern gives us a possibility to figure out the spatial orientation of the triaxial-shaped dark halo and to measure the triaxiality.
We apply a parametric reconstruction method to a homogeneous, isotropic and spatially flat Friedmann-Robertson-Walker (FRW) cosmological model filled of a fluid of dark energy (DE) with constant equation of state (EOS) parameter interacting with dark matter (DM). The reconstruction method is based on expansions of the general interaction term and the relevant cosmological variables in terms of Chebyshev polynomials which form a complete set orthonormal functions. This interaction term describes an exchange of energy flow between the DE and DM within dark sector. To show how the method works we do the reconstruction of the interaction function expanding it in terms of only the first six Chebyshev polynomials and obtain the best estimation for the coefficients of the expansion assuming three models: (a) a DE equation of the state parameter $w =-1$ (an interacting cosmological $Lambda$), (b) a DE equation of the state parameter $w =$ constant with a dark matter density parameter fixed, (c) a DE equation of the state parameter $w =$ constant with a free constant dark matter density parameter to be estimated, and using the Union2 SNe Ia data set from The Supernova Cosmology Project (SCP) composed by 557 type Ia supernovae. In both cases, the preliminary reconstruction shows that in the best scenario there exist the possibility of a crossing of the noninteracting line Q=0 in the recent past within the $1sigma$ and $2sigma$ errors from positive values at early times to negative values at late times. This means that, in this reconstruction, there is an energy transfer from DE to DM at early times and an energy transfer from DM to DE at late times. We conclude that this fact is an indication of the possible existence of a crossing behavior in a general interaction coupling between dark components.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا