ﻻ يوجد ملخص باللغة العربية
Non-reciprocal components, such as isolators and circulators, are critical to wireless communication and radar applications. Traditionally, non-reciprocal components have been implemented using ferrite materials, which exhibit non-reciprocity under the influence of an external magnetic field. However, ferrite materials cannot be integrated into IC fabrication processes, and consequently are bulky and expensive. In the recent past, there has been strong interest in achieving non-reciprocity in a non-magnetic IC-compatible fashion using spatio-temporal modulation. In this paper, we present a general approach to non-reciprocity based on switched transmission lines. Switched transmission lines enable broadband, lossless and compact non-reciprocity, and a wide range of non-reciprocal functionalities, including non-reciprocal phase shifters, ultra-broadband gyrators and isolators, frequency-conversion isolators, and high-linearity/high-frequency/ultra-broadband circulators. We present a detailed theoretical analysis of the various non-idealities that impact insertion loss and provide design guidelines. The theory is validated by experimental results from discrete-component-based gyrators and isolators, and a 25GHz circulator fabricated in 45nm SOI CMOS technology.
We propose a controllable non-reciprocal transmission model. The model consists of a Mobius ring, which is connected with two one-dimensional semi-infinite chains, and with a two-level atom located inside one of the cavities of the Mobius ring. We us
In this paper, a novel principle-driven fiber transmission model based on physical induced neural network (PINN) is proposed. Unlike data-driven models which regard fiber transmission problem as data regression tasks, this model views it as an equati
We report strongly non-reciprocal behaviour for quantum dot exciton spins coupled to nano-photonic waveguides under resonant laser excitation. A clear dependence of the transmission spectrum on the propagation direction is found for a chirally-couple
In this study, we propose a framework for chirp-based communications by exploiting discrete Fourier transform-spread orthogonal frequency division multiplexing (DFT-s-OFDM). We show that a well-designed frequency-domain spectral shaping (FDSS) filter
The digital Subscriber Line (DSL) remains an important component of heterogeneous networking, especially in historic city-centers, where using optical fibre is less realistic. Recently, the power consumption has become an important performance metric