ﻻ يوجد ملخص باللغة العربية
Recently, the existence of an Amplituhedron for tree level amplitudes in the bi-adjoint scalar field theory has been proved by Arkhani-Hamed et al. We argue that hyperbolic geometry constitutes a natural framework to address the study of positive geometries in moduli spaces of Riemann surfaces, and thus to try to extend this achievement beyond tree level. In this paper we begin an exploration of these ideas starting from the simplest example of hyperbolic geometry, the hyperbolic plane. The hyperboloid model naturally guides us to re-discover the moduli space Associahedron, and a new version of its kinematical avatar. As a by-product we obtain a solution to the scattering equations which can be interpreted as a special case of the two well known solutions in terms of spinor-helicity formalism. The construction is done in $1+2$ dimensions and this makes harder to understand how to extract the amplitude from the dlog of the space time Associahedron. Nevertheless, we continue the investigation accommodating a loop momentum in the picture. By doing this we are led to another polytope called Halohedron, which was already known to mathematicians. We argue that the Halohedron fulfils many criteria that make it plausible to be understood as a 1-loop Amplituhedron for the cubic theory. Furthermore, the hyperboloid model again allows to understand that a kinematical version of the Halohedron exists and is related to the one living in moduli space by a simple generalisation of the tree level map.
This review is a primer on recently established geometric methods for observables in quantum field theories. The main emphasis is on amplituhedra, i.e. geometries encoding scattering amplitudes for a variety of theories. These pertain to a broader fa
We consider minimally supersymmetric QCD in 2+1 dimensions, with Chern-Simons and superpotential interactions. We propose an infrared $SU(N) leftrightarrow U(k)$ duality involving gauge-singlet fields on one of the two sides. It shares qualitative fe
We consider three-dimensional sQED with 2 flavors and minimal supersymmetry. We discuss various models which are dual to Gross-Neveu-Yukawa theories. The $U(2)$ ultraviolet global symmetry is often enhanced in the infrared, for instance to $O(4)$ or
In this article we considered models of particles living in a three-dimensional space-time with a nonstandard noncommutativity induced by shifting canonical coordinates and momenta with generators of a unitary irreducible representation of the Lorent
We consider Quantum Electrodynamics with an even number $N_f$ of bosonic or fermionic flavors, allowing for interactions respecting at least $U(N_f/2)^2$ global symmetry. Both in the bosonic and in the fermionic case, we find four interacting fixed p