ﻻ يوجد ملخص باللغة العربية
By coupling a $Lambda$-type quantum emitter to a chiral waveguide, in which the polarization of a photon is locked to its propagation direction, we propose a controllable photon-emitter interface for quantum networks. We show that this chiral system enables the SWAP gate and a hybrid-entangling gate between the emitter and a flying single photon. It also allows deterministic storage and retrieval of single-photon states with high fidelities and efficiencies. In short, this chirally coupled emitter-photon interface can be a critical building block toward a large-scale quantum network.
Trapped atomic ions have been successfully used for demonstrating basic elements of universal quantum information processing (QIP). Nevertheless, scaling up of these methods and techniques to achieve large scale universal QIP, or more specialized qua
Hybrid molecular-plasmonic nanostructures have demonstrated their potential for surface enhanced spectroscopies, sensing or quantum control at the nanoscale. In this work, we investigate the strong coupling regime and explicitly describe the hybridiz
We propose a nanophotonic platform for topological quantum optics. Our system is composed of a two-dimensional lattice of non-linear quantum emitters with optical transitions embedded in a photonic crystal slab. The emitters interact through the guid
Large-scale quantum networks will employ telecommunication-wavelength photons to exchange quantum information between remote measurement, storage, and processing nodes via fibre-optic channels. Quantum memories compatible with telecommunication-wavel
The concept of quantum memory plays an incisive role in the quantum information theory. As confirmed by several recent rigorous mathematical studies, the quantum memory inmate in the bipartite system $rho_{AB}$ can reduce uncertainty about the part $