ﻻ يوجد ملخص باللغة العربية
We report a new classical spin liquid in which the collective flux degrees of freedom break the translation symmetry of the honeycomb lattice. This exotic phase exists in frustrated spin-orbit magnets where a dominant off-diagonal exchange, the so-called $Gamma$ term, results in a macroscopic ground-state degeneracy at the classical level. We demonstrate that the system undergoes a phase transition driven by thermal order-by-disorder at a critical temperature $T_c approx 0.04 |Gamma|$. At first sight, this transition reduces an emergent spherical spin-symmetry to a cubic one: spins point predominantly toward the cubic axes at $T < T_c$. However, this seems to simply restore the cubic symmetry of the $Gamma$ model, and the non-coplanar spins remain disordered below $T_c$. We show that the phase transition actually corresponds to plaquette ordering of hexagonal fluxes and the cubic symmetry is indeed broken, a scenario that is further confirmed by our extensive Monte Carlo simulations.
We show that the off-diagonal exchange anisotropy drives Mott insulators with strong spin-orbit coupling to a classical spin liquid regime, characterized by an infinite number of ground states and Ising variables living on closed or open strings. Dep
Iridate oxides on a honeycomb lattice are considered promising candidates for realization of quantum spin liquid states. We investigate the magnetic couplings in a structural model for a honeycomb iridate K$_2$IrO$_3$, with $C_3$ point group symmetry
Both the Jahn-Teller distortion of Cu$^{2+}$O$_6$ octahedra and magnetic ordering are absent in hexagonal Ba$_3$CuSb$_2$O$_9$ suggesting a Cu 3$d$ spin-orbital liquid state. Here, by means of resonant x-ray scattering and absorption experiment, we sh
Resonant x-ray diffraction experiments were performed for the metallic iridium oxide IrO$_{2}$. We observed anisotropic tensor of susceptibility (ATS) scattering, the spectrum of which shows a sharp contrast between the $L_{3}$ and $L_{2}$ edges. At
We present a large-scale density matrix renormalization group (DMRG) study of the spin-$1$ SU(3) bilinear-biquadratic model on the square lattice, which was shown to host a nematic spin liquid state in recent DMRG calculations. We report that this sp