ﻻ يوجد ملخص باللغة العربية
We show that the off-diagonal exchange anisotropy drives Mott insulators with strong spin-orbit coupling to a classical spin liquid regime, characterized by an infinite number of ground states and Ising variables living on closed or open strings. Depending on the sign of the anisotropy, quantum fluctuations either fail to lift the degeneracy down to very low temperatures, or select non-collinear magnetic states with unconventional spin correlations. The results apply to all 2D and 3D tri-coordinated materials with bond-directional anisotropy, and provide a consistent interpretation of the suppression of the x-ray magnetic circular dichroism signal reported recently for $beta$-Li$_2$IrO$_3$ under pressure.
We report a new classical spin liquid in which the collective flux degrees of freedom break the translation symmetry of the honeycomb lattice. This exotic phase exists in frustrated spin-orbit magnets where a dominant off-diagonal exchange, the so-ca
Iridate oxides on a honeycomb lattice are considered promising candidates for realization of quantum spin liquid states. We investigate the magnetic couplings in a structural model for a honeycomb iridate K$_2$IrO$_3$, with $C_3$ point group symmetry
We report the structural transformation of hexagonal Ba3YIr2O9 to a cubic double perovskite form (stable in ambient conditions) under an applied pressure of 8GPa at 1273K. While the ambient pressure (AP) synthesized sample undergoes long-range magnet
In systems where electrons form both dispersive bands and small local spins, we show that changes of the spin configuration can tune the bands through a Lifshitz transition, resulting in a continuous metal-insulator transition associated with a progr
Motivated by recent experiments on $alpha$-RuCl$_3$, we investigate a possible quantum spin liquid ground state of the honeycomb-lattice spin model with bond-dependent interactions. We consider the $K-Gamma$ model, where $K$ and $Gamma$ represent the