ﻻ يوجد ملخص باللغة العربية
We present a non-iterative solver based on the Schur complement method for sparse linear systems of special form which appear in Quantum Monte-Carlo (QMC) simulations of strongly interacting fermions on the lattice. While the number of floating-point operations for this solver scales as the cube of the number of lattice sites, for practically relevant lattice sizes it is still significantly faster than iterative solvers such as the Conjugate Gradient method in the regime of strong inter-fermion interactions, for example, in the vicinity of quantum phase transitions. The speed-up is even more dramatic for the solution of multiple linear systems with different right-hand sides. We present benchmark results for QMC simulations of the tight-binding models on the hexagonal graphene lattice with on-site (Hubbard) and non-local (Coulomb) interactions, and demonstrate the potential for further speed-up using GPU.
We show that the two recently proposed methods to compute Renyi entanglement entropies in the realm of determinant quantum Monte Carlo methods for fermions are in principle equivalent, but differ in sampling strategies. The analogy allows to formulat
Cluster Perturbation Theory (CPT) is a technique for computing the spectral function of fermionic models with local interactions. By combining the solution of the model on a finite cluster with perturbation theory on intra-cluster hoppings, CPT provi
The Algorithms for Lattice Fermions package provides a general code for the finite-temperature and projective auxiliary-field quantum Monte Carlo algorithm. The code is engineered to be able to simulate any model that can be written in terms of sums
We present different methods to increase the performance of Hybrid Monte Carlo simulations of the Hubbard model in two-dimensions. Our simulations concentrate on a hexagonal lattice, though can be easily generalized to other lattices. It is found tha
Random batch algorithms are constructed for quantum Monte Carlo simulations. The main objective is to alleviate the computational cost associated with the calculations of two-body interactions, including the pairwise interactions in the potential ene