ترغب بنشر مسار تعليمي؟ اضغط هنا

Accelerating Hybrid Monte Carlo simulations of the Hubbard model on the hexagonal lattice

71   0   0.0 ( 0 )
 نشر من قبل Johann Ostmeyer
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present different methods to increase the performance of Hybrid Monte Carlo simulations of the Hubbard model in two-dimensions. Our simulations concentrate on a hexagonal lattice, though can be easily generalized to other lattices. It is found that best results can be achieved using a flexible GMRES solver for matrix

قيم البحث

اقرأ أيضاً

Using first-principle Hybrid-Monte-Carlo (HMC) simulations, we carry out an unbiased study of the competition between spin-density wave (SDW) and charge-density wave (CDW) order in the extended Hubbard model on the two dimensional hexagonal lattice a t half filling. We determine the phase diagram in the space of on-site and nearest-neighbor couplings $U$ and $V$ in the region $V<U/3$, which can be simulated without a fermion sign problem, and find that a transition from semimetal to a SDW phase occurs at sufficiently large $U$ for basically all $V$. Tracing the corresponding phase boundary from $V=0$ to the $V=U/3$ line, we find evidence for critical scaling in the Gross-Neveu universality class for the entire boundary. With rather high confidence we rule out the existence of the CDW ordered phase anywhere in the range of parameters considered. We also discuss several improvements of the HMC algorithm which are crucial to reach these conclusions, in particular the improved fermion action with exact sublattice symmetry and the complexification of the Hubbard-Stratonovich field to ensure the ergodicity of the algorithm.
We study the one-band Hubbard model on the honeycomb lattice using a combination of quantum Monte Carlo (QMC) simulations and static as well as dynamical mean-field theory (DMFT). This model is known to show a quantum phase transition between a Dirac semi-metal and the antiferromagnetic insulator. The aim of this article is to provide a detailed comparison between these approaches by computing static properties, notably ground-state energy, single-particle gap, double occupancy, and staggered magnetization, as well as dynamical quantities such as the single-particle spectral function. At the static mean-field level local moments cannot be generated without breaking the SU(2) spin symmetry. The DMFT approximation accounts for temporal fluctuations, thus captures both the evolution of the double occupancy and the resulting local moment formation in the paramagnetic phase. As a consequence, the DMFT approximation is found to be very accurate in the Dirac semi-metallic phase where local moment formation is present and the spin correlation length small. However, in the vicinity of the fermion quantum critical point the spin correlation length diverges and the spontaneous SU(2) symmetry breaking leads to low-lying Goldstone modes in the magnetically ordered phase. The impact of these spin fluctuations on the single-particle spectral function -- textit{waterfall} features and narrow spin-polaron bands -- is only visible in the lattice QMC approach.
We present a method for direct hybrid Monte Carlo simulation of graphene on the hexagonal lattice. We compare the results of the simulation with exact results for a unit hexagonal cell system, where the Hamiltonian can be solved analytically.
The Algorithms for Lattice Fermions package provides a general code for the finite-temperature and projective auxiliary-field quantum Monte Carlo algorithm. The code is engineered to be able to simulate any model that can be written in terms of sums of single-body operators, of squares of single-body operators and single-body operators coupled to a bosonic field with given dynamics. The package includes five pre-defined model classes: SU(N) Kondo, SU(N) Hubbard, SU(N) t-V and SU(N) models with long range Coulomb repulsion on honeycomb, square and N-leg lattices, as well as $Z_2$ unconstrained lattice gauge theories coupled to fermionic and $Z_2$ matter. An implementation of the stochastic Maximum Entropy method is also provided. One can download the code from our Git instance at https://git.physik.uni-wuerzburg.de/ALF/ALF/-/tree/ALF-2.0 and sign in to file issues.
We study interacting Majorana fermions in two dimensions as a low-energy effective model of a vortex lattice in two-dimensional time-reversal-invariant topological superconductors. For that purpose, we implement ab-initio quantum Monte Carlo simulati on to the Majorana fermion system in which the path-integral measure is given by a semi-positive Pfaffian. We discuss spontaneous breaking of time-reversal symmetry at finite temperature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا