ﻻ يوجد ملخص باللغة العربية
The magnetic insulator $alpha$-RuCl$_{3}$ is a promising candidate to realize Kitaev interactions on a quasi-2D honeycomb lattice. We perform extensive susceptibility measurements on single crystals of $alpha$-RuCl$_{3}$, including angle-dependence of the in-plane longitudinal and transverse susceptibilities, which reveal a unidirectional anisotropy within the honeycomb plane. By comparing the experimental results to a high-temperature expansion of a Kitaev-Heisenberg-$Gamma$ spin Hamiltonian with bond anisotropy, we find excellent agreement with the observed phase shift and periodicity of the angle-resolved susceptibilities. Within this model, we show that the pronounced difference between in-plane and out-of-plane susceptibilities as well as the finite transverse susceptibility are rooted in strong symmetric off-diagonal $Gamma$ spin exchange. The $Gamma$ couplings and relationships between other terms in the model Hamiltonian are quantified by extracting relevant Curie-Weiss intercepts from the experimental data.
Anderson proposed structural topology in frustrated magnets hosting novel quantum spin liquids (QSLs). The QSL state is indeed exactly derived by fractionalizing the spin excitation into spinless Majorana fermions in a perfect two dimensional (2D) ho
$alpha$-RuCl$_{3}$ is a major candidate for the realization of the Kitaev quantum spin liquid, but its zigzag antiferromagnetic order at low temperatures indicates deviations from the Kitaev model. We have quantified the spin Hamiltonian of $alpha$-R
$alpha$-RuCl$_3$ has attracted enormous attention since it has been proposed as a prime candidate to study fractionalized magnetic excitations akin to Kitaevs honeycomb-lattice spin liquid. We have performed a detailed specific-heat investigation at
The pure Kitaev honeycomb model harbors a quantum spin liquid in zero magnetic fields, while applying finite magnetic fields induces a topological spin liquid with non-Abelian anyonic excitations. This latter phase has been much sought after in Kitae
The honeycomb Kitaev-Heisenberg model is a source of a quantum spin liquid with Majorana fermions and gauge flux excitations as fractional quasiparticles. In the quest of finding a pertinent material, $alpha$-RuCl$_{3}$ recently emerged as a prime ca