ترغب بنشر مسار تعليمي؟ اضغط هنا

Anisotropic susceptibilities in the honeycomb Kitaev system $alpha$-RuCl$_{3}$

105   0   0.0 ( 0 )
 نشر من قبل Paula Kelley
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The magnetic insulator $alpha$-RuCl$_{3}$ is a promising candidate to realize Kitaev interactions on a quasi-2D honeycomb lattice. We perform extensive susceptibility measurements on single crystals of $alpha$-RuCl$_{3}$, including angle-dependence of the in-plane longitudinal and transverse susceptibilities, which reveal a unidirectional anisotropy within the honeycomb plane. By comparing the experimental results to a high-temperature expansion of a Kitaev-Heisenberg-$Gamma$ spin Hamiltonian with bond anisotropy, we find excellent agreement with the observed phase shift and periodicity of the angle-resolved susceptibilities. Within this model, we show that the pronounced difference between in-plane and out-of-plane susceptibilities as well as the finite transverse susceptibility are rooted in strong symmetric off-diagonal $Gamma$ spin exchange. The $Gamma$ couplings and relationships between other terms in the model Hamiltonian are quantified by extracting relevant Curie-Weiss intercepts from the experimental data.



قيم البحث

اقرأ أيضاً

106 - S.-Y. Park , S.-H. Do , K.-Y. Choi 2016
Anderson proposed structural topology in frustrated magnets hosting novel quantum spin liquids (QSLs). The QSL state is indeed exactly derived by fractionalizing the spin excitation into spinless Majorana fermions in a perfect two dimensional (2D) ho neycomb lattice, the so-called Kitaev lattice, and its experimental realisation is eagerly being pursued. Here we, for the first time, report the Kitaev lattice stacking with van der Waals (vdW) bonding in a high quality {alpha}-RuCl$_3$ crystal using x-ray and neutron diffractions. Even in absence of apparent monoclinic distortion, the system exhibits antiferromagnetic (AFM) ordering below 6.5 K, likely due to minute magnetic interaction from trigonal distortion and/or interlayer coupling additionally to the Kitaev Hamiltonian. We also demonstrate 2D Ising-like critical behaviors near the Neel temperature in the order parameter and specific heat, capturing the characteristics of short-range spin-spin correlations underlying the Kitaev model. Our findings hold promise for unveiling enigmatic physics emerging from the Kitaev QSL.
$alpha$-RuCl$_{3}$ is a major candidate for the realization of the Kitaev quantum spin liquid, but its zigzag antiferromagnetic order at low temperatures indicates deviations from the Kitaev model. We have quantified the spin Hamiltonian of $alpha$-R uCl$_{3}$ by a resonant inelastic x-ray scattering study at the Ru $L_{3}$ absorption edge. In the paramagnetic state, the quasi-elastic intensity of magnetic excitations has a broad maximum around the zone center without any local maxima at the zigzag magnetic Bragg wavevectors. This finding implies that the zigzag order is fragile and readily destabilized by competing ferromagnetic correlations. The classical ground state of the experimentally determined Hamiltonian is actually ferromagnetic. The zigzag state is stabilized via a quantum order by disorder mechanism, leaving ferromagnetism -- along with the Kitaev spin liquid -- as energetically proximate metastable states. The three closely competing states and their collective excitations hold the key to the theoretical understanding of the unusual properties of $alpha$-RuCl$_{3}$ in magnetic fields.
$alpha$-RuCl$_3$ has attracted enormous attention since it has been proposed as a prime candidate to study fractionalized magnetic excitations akin to Kitaevs honeycomb-lattice spin liquid. We have performed a detailed specific-heat investigation at temperatures down to $0.4$ K in applied magnetic fields up to $9$ T for fields parallel to the $ab$ plane. We find a suppression of the zero-field antiferromagnetic order, together with an increase of the low-temperature specific heat, with increasing field up to $mu_0H_capprox 6.9$ T. Above $H_c$, the magnetic contribution to the low-temperature specific heat is strongly suppressed, implying the opening of a spin-excitation gap. Our data point toward a field-induced quantum critical point (QCP) at $H_c$; this is supported by universal scaling behavior near $H_c$. Remarkably, the data also reveal the existence of a small characteristic energy scale well below $1$~meV above which the excitation spectrum changes qualitatively. We relate the data to theoretical calculations based on a $J_1$--$K_1$--$Gamma_1$--$J_3$ honeycomb model.
The pure Kitaev honeycomb model harbors a quantum spin liquid in zero magnetic fields, while applying finite magnetic fields induces a topological spin liquid with non-Abelian anyonic excitations. This latter phase has been much sought after in Kitae v candidate materials, such as $alpha$-RuCl$_3$. Currently, two competing scenarios exist for the intermediate field phase of this compound ($B=7-10$ T), based on experimental as well as theoretical results: (i) conventional multiparticle magnetic excitations of integer quantum number vs. (ii) Majorana fermionic excitations of possibly non-Abelian nature with a fractional quantum number. To discriminate between these scenarios a detailed investigation of excitations over a wide field-temperature phase diagram is essential. Here we present Raman spectroscopic data revealing low-energy quasiparticles emerging out of a continuum of fractionalized excitations at intermediate fields, which are contrasted by conventional spin-wave excitations. The temperature evolution of these quasiparticles suggests the formation of bound states out of fractionalized excitations.
The honeycomb Kitaev-Heisenberg model is a source of a quantum spin liquid with Majorana fermions and gauge flux excitations as fractional quasiparticles. In the quest of finding a pertinent material, $alpha$-RuCl$_{3}$ recently emerged as a prime ca ndidate. Here we unveil highly unusual low-temperature heat conductivity $kappa$ of $alpha$-RuCl$_{3}$: beyond a magnetic field of $B_capprox$ 7.5 T, $kappa$ increases by about one order of magnitude, resulting in a large magnetic field dependent peak at about 7 K, both for in-plane as well as out-of-plane transport. This clarifies the unusual magnetic field dependence unambiguously to be the result of severe scattering of phonons off putative Kitaev-Heisenberg excitations in combination with a drastic field-induced change of the magnetic excitation spectrum. In particular, an unexpectedly large energy gap arises, which increases approximately linearly with the magnetic field and reaches a remarkably large $hbaromega_0/k_Bapprox $ 50 K at 18 T.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا