ترغب بنشر مسار تعليمي؟ اضغط هنا

Proximate ferromagnetic state in the Kitaev model material $alpha$-RuCl$_{3}$

97   0   0.0 ( 0 )
 نشر من قبل Hakuto Suzuki
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

$alpha$-RuCl$_{3}$ is a major candidate for the realization of the Kitaev quantum spin liquid, but its zigzag antiferromagnetic order at low temperatures indicates deviations from the Kitaev model. We have quantified the spin Hamiltonian of $alpha$-RuCl$_{3}$ by a resonant inelastic x-ray scattering study at the Ru $L_{3}$ absorption edge. In the paramagnetic state, the quasi-elastic intensity of magnetic excitations has a broad maximum around the zone center without any local maxima at the zigzag magnetic Bragg wavevectors. This finding implies that the zigzag order is fragile and readily destabilized by competing ferromagnetic correlations. The classical ground state of the experimentally determined Hamiltonian is actually ferromagnetic. The zigzag state is stabilized via a quantum order by disorder mechanism, leaving ferromagnetism -- along with the Kitaev spin liquid -- as energetically proximate metastable states. The three closely competing states and their collective excitations hold the key to the theoretical understanding of the unusual properties of $alpha$-RuCl$_{3}$ in magnetic fields.



قيم البحث

اقرأ أيضاً

162 - H. Li , T. T. Zhang , A. Said 2020
The Kitaev quantum spin liquid epitomizes an entangled topological state, for which two flavors of fractionalized low-energy excitations are predicted: the itinerant Majorana fermion and the Z2 gauge flux. Detection of these excitations remains chall enging, because of their fractional quantum numbers and non-locality. It was proposed recently that fingerprints of fractional excitations are encoded in the phonon spectra of Kitaev quantum spin liquids through a novel fractional-excitation-phonon coupling. Here, we uncover this effect in $alpha$-RuCl3 using inelastic X-ray scattering with meV resolution. At high temperature, we discover interlaced optical phonons intercepting a transverse acoustic phonon between 3 and 7 meV. Upon decreasing temperature, the optical phonons display a large intensity enhancement near the Kitaev energy, JK~8 meV, that coincides with a giant acoustic phonon softening near the Z2 gauge flux energy scale. This fractional excitation induced phonon anomalies uncover the key ingredient of the quantum thermal Hall effect in $alpha$-RuCl3 and demonstrates a proof-of-principle method to detect fractional excitations in topological quantum materials.
146 - T. Yokoi , S. Ma , Y. Kasahara 2020
Heat transport mediated by Majorana edge modes in a magnetic insulator leads to a half-integer thermal quantum Hall conductance, which has recently been reported for the two-dimensional honeycomb material $alpha$-RuCl$_3$. While the conventional elec tronic Hall effect requires a perpendicular magnetic field, we find that this is not the case in $alpha$-RuCl$_3$. Strikingly, the thermal Hall plateau appears even for a magnetic field with no out-of-plane components. The field-angular variation of the quantized thermal Hall conductance has the same sign structure of the topological Chern number, which is either $pm$1, as the Majorana band structure of the pure Kitaev spin liquid. This observation of a half-integer anomalous thermal Hall effect firmly establishes that the Kitaev interaction is primarily responsible and that the non-Abelian topological order associated with fractionalization of the local magnetic moments persists even in the presence of non-Kitaev interactions in $alpha$-RuCl$_3$.
We study on transport and magnetic properties of hydrated and lithium-intercalated $alpha$-RuCl$_3$, Li$_x$RuCl$_3 cdot y$H$_2$O, for investigating the effect on mobile-carrier doping into candidate materials for a realization of a Kitaev model. From thermogravitometoric and one-dimensional electron map analyses, we find two crystal structures of this system, that is, mono-layer hydrated Li$_x$RuCl$_3 cdot y$H$_2$O~$(xapprox0.56, yapprox1.3)$ and bi-layer hydrated Li$_x$RuCl$_3 cdot y$H$_2$O~$(xapprox0.56, yapprox3.9)$. The temperature dependence of the electrical resistivity shows a temperature hysteresis at 200-270 K, which is considered to relate with a formation of a charge order. The antiferromagnetic order at 7-13 K in pristine $alpha$-RuCl$_3$~ is successfully suppressed down to 2 K in bi-layer hydrated Li$_x$RuCl$_3 cdot y$H$_2$O, which is sensitive to not only an electronic state of Ru but also an interlayer distance between Ru-Cl planes.
$alpha$-RuCl$_3$ is drawing much attention as a promising candidate Kitaev quantum spin liquid. However, despite intensive research efforts, controversy remains about the form of the basic interactions governing the physics of this material. Even the sign of the Kitaev interaction (the bond-dependent anisotropic interaction responsible for Kitaev physics) is still under debate, with conflicting results from theoretical and experimental studies. The significance of the symmetric off-diagonal exchange interaction (referred to as the $Gamma$ term) is another contentious question. Here, we present resonant elastic x-ray scattering data that provides unambiguous experimental constraints to the two leading terms in the magnetic interaction Hamiltonian. We show that the Kitaev interaction ($K$) is ferromagnetic, and that the $Gamma$ term is antiferromagnetic and comparable in size to the Kitaev interaction. Our findings also provide a natural explanation for the large anisotropy of the magnetic susceptibility in $alpha$-RuCl$_3$ as arising from the large $Gamma$ term. We therefore provide a crucial foundation for understanding the interactions underpinning the exotic magnetic behaviours observed in $alpha$-RuCl$_3$.
The honeycomb Kitaev-Heisenberg model is a source of a quantum spin liquid with Majorana fermions and gauge flux excitations as fractional quasiparticles. In the quest of finding a pertinent material, $alpha$-RuCl$_{3}$ recently emerged as a prime ca ndidate. Here we unveil highly unusual low-temperature heat conductivity $kappa$ of $alpha$-RuCl$_{3}$: beyond a magnetic field of $B_capprox$ 7.5 T, $kappa$ increases by about one order of magnitude, resulting in a large magnetic field dependent peak at about 7 K, both for in-plane as well as out-of-plane transport. This clarifies the unusual magnetic field dependence unambiguously to be the result of severe scattering of phonons off putative Kitaev-Heisenberg excitations in combination with a drastic field-induced change of the magnetic excitation spectrum. In particular, an unexpectedly large energy gap arises, which increases approximately linearly with the magnetic field and reaches a remarkably large $hbaromega_0/k_Bapprox $ 50 K at 18 T.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا