ﻻ يوجد ملخص باللغة العربية
We establish duality between real forms of the quantum deformation of the 4-dimensional orthogonal group studied by Fioresi et al. and the classification work made by Borowiec et al.. Classically these real forms are the isometry groups of $mathbb{R}^4$ equipped with Euclidean, Kleinian or Lorentzian metric. A general deformation, named $q$-linked, of each of these spaces is then constructed, together with the coaction of the corresponding isometry group.
We proceed to study Yang-Baxter deformations of 4D Minkowski spacetime based on a conformal embedding. We first revisit a Melvin background and argue a Lax pair by adopting a simple replacement law invented in 1509.00173. This argument enables us to
We provide the classification of real forms of complex D=4 Euclidean algebra $mathcal{epsilon}(4; mathbb{C}) = mathfrak{o}(4;mathbb{C})) ltimes mathbf{T}_{mathbb{C}}^4$ as well as (pseudo)real forms of complex D=4 Euclidean superalgebras $mathcal{eps
CFTs in Euclidean signature satisfy well-accepted rules, such as the convergent Euclidean OPE. It is nowadays common to assume that CFT correlators exist and have various properties also in Lorentzian signature. Some of these properties may represent
We revise the use of 8-dimensional conformal, complex (Cartan) domains as a base for the construction of conformally invariant quantum (field) theory, either as phase or configuration spaces. We follow a gauge-invariant Lagrangian approach (of nonlin
Using the determinant representation of gauge transformation operator, we have shown that the general form of $tau$ function of the $q$-KP hierarchy is a q-deformed generalized Wronskian, which includes the q-deformed Wronskian as a special case. On